Ahmed M. A. Ibrahim, Nawal Abdulaziz Alfuhaid, Marwa Adel Thabet, Ali Mohamed Ali
{"title":"氧化锌纳米颗粒对北方库蚊(库蚊科)幼虫的慢性作用","authors":"Ahmed M. A. Ibrahim, Nawal Abdulaziz Alfuhaid, Marwa Adel Thabet, Ali Mohamed Ali","doi":"10.1007/s42690-023-01092-6","DOIUrl":null,"url":null,"abstract":"Abstract It is estimated that up to a million person are subject to death every year from mosquito-borne diseases. To avoid the epidemic situations arising from mosquito-borne diseases, it is necessary to reduce the mosquito populations. Challenges against efficient mosquito management are mainly related to emergence of insecticide resistance leading to increased need for the development of alternative methods. Ideal insecticides cause permanent impacts on the target insects in order to ensure powerful insecticidal effect. This study hypothesized that the impact of zinc oxide nanoparticles (ZnONPs) on the larvae of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquito is irreversible and chronic. The first instar C. pipiens larvae were treated with a sublethal concentration (LC 20 , 0.24 g/L) of ZnONPs for 72 h and then allowed to recover for additional 72 h. Following the recovery period, the changes in zinc accumulation, growth rate, gut ultrastructure, biochemical changes in the hydrogen peroxide, antioxidant and detoxification enzymes were recorded and compared between recovered larvae and untreated (control). Recovered larvae showed significant increase in the accumulated zinc and reduced growth rate by about 50% compared to untreated (control). Furthermore, the ultrastructure of the alimentary canal epithelium showed several forms of pathological signs in different parts of the midgut of recovered larvae. Treatment with ZnONPs induced oxidative stress (OS) which appeared in the form of significant increase in hydrogen peroxide concentration. In response to OS, insects activate the detoxification system to get rid of the toxic nanoparticles. The detoxification enzyme alkaline phosphatase (ALP) and the antioxidant enzyme glutathione peroxidase (GPX) were inhibited while superoxide dismutase (SOD) was activated against ZnONPs toxicity. Additionally, recovered larvae didn’t show differences in the catalase activity from untreated control. These results verified that ZnONPs induce chronic impacts on C. pipiens larvae suggesting that it can be used in their management via direct application in standing water sources including accumulated rains and swimming pools.","PeriodicalId":14434,"journal":{"name":"International Journal of Tropical Insect Science","volume":"93 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic effects induced by zinc oxide nanoparticles against larvae of the northern house mosquito Culex pipiens (Diptera: Culicidae)\",\"authors\":\"Ahmed M. A. Ibrahim, Nawal Abdulaziz Alfuhaid, Marwa Adel Thabet, Ali Mohamed Ali\",\"doi\":\"10.1007/s42690-023-01092-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is estimated that up to a million person are subject to death every year from mosquito-borne diseases. To avoid the epidemic situations arising from mosquito-borne diseases, it is necessary to reduce the mosquito populations. Challenges against efficient mosquito management are mainly related to emergence of insecticide resistance leading to increased need for the development of alternative methods. Ideal insecticides cause permanent impacts on the target insects in order to ensure powerful insecticidal effect. This study hypothesized that the impact of zinc oxide nanoparticles (ZnONPs) on the larvae of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquito is irreversible and chronic. The first instar C. pipiens larvae were treated with a sublethal concentration (LC 20 , 0.24 g/L) of ZnONPs for 72 h and then allowed to recover for additional 72 h. Following the recovery period, the changes in zinc accumulation, growth rate, gut ultrastructure, biochemical changes in the hydrogen peroxide, antioxidant and detoxification enzymes were recorded and compared between recovered larvae and untreated (control). Recovered larvae showed significant increase in the accumulated zinc and reduced growth rate by about 50% compared to untreated (control). Furthermore, the ultrastructure of the alimentary canal epithelium showed several forms of pathological signs in different parts of the midgut of recovered larvae. Treatment with ZnONPs induced oxidative stress (OS) which appeared in the form of significant increase in hydrogen peroxide concentration. In response to OS, insects activate the detoxification system to get rid of the toxic nanoparticles. The detoxification enzyme alkaline phosphatase (ALP) and the antioxidant enzyme glutathione peroxidase (GPX) were inhibited while superoxide dismutase (SOD) was activated against ZnONPs toxicity. Additionally, recovered larvae didn’t show differences in the catalase activity from untreated control. These results verified that ZnONPs induce chronic impacts on C. pipiens larvae suggesting that it can be used in their management via direct application in standing water sources including accumulated rains and swimming pools.\",\"PeriodicalId\":14434,\"journal\":{\"name\":\"International Journal of Tropical Insect Science\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Tropical Insect Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42690-023-01092-6\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Tropical Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42690-023-01092-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Chronic effects induced by zinc oxide nanoparticles against larvae of the northern house mosquito Culex pipiens (Diptera: Culicidae)
Abstract It is estimated that up to a million person are subject to death every year from mosquito-borne diseases. To avoid the epidemic situations arising from mosquito-borne diseases, it is necessary to reduce the mosquito populations. Challenges against efficient mosquito management are mainly related to emergence of insecticide resistance leading to increased need for the development of alternative methods. Ideal insecticides cause permanent impacts on the target insects in order to ensure powerful insecticidal effect. This study hypothesized that the impact of zinc oxide nanoparticles (ZnONPs) on the larvae of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquito is irreversible and chronic. The first instar C. pipiens larvae were treated with a sublethal concentration (LC 20 , 0.24 g/L) of ZnONPs for 72 h and then allowed to recover for additional 72 h. Following the recovery period, the changes in zinc accumulation, growth rate, gut ultrastructure, biochemical changes in the hydrogen peroxide, antioxidant and detoxification enzymes were recorded and compared between recovered larvae and untreated (control). Recovered larvae showed significant increase in the accumulated zinc and reduced growth rate by about 50% compared to untreated (control). Furthermore, the ultrastructure of the alimentary canal epithelium showed several forms of pathological signs in different parts of the midgut of recovered larvae. Treatment with ZnONPs induced oxidative stress (OS) which appeared in the form of significant increase in hydrogen peroxide concentration. In response to OS, insects activate the detoxification system to get rid of the toxic nanoparticles. The detoxification enzyme alkaline phosphatase (ALP) and the antioxidant enzyme glutathione peroxidase (GPX) were inhibited while superoxide dismutase (SOD) was activated against ZnONPs toxicity. Additionally, recovered larvae didn’t show differences in the catalase activity from untreated control. These results verified that ZnONPs induce chronic impacts on C. pipiens larvae suggesting that it can be used in their management via direct application in standing water sources including accumulated rains and swimming pools.
期刊介绍:
International Journal of Tropical Insect Science is the only journal devoted exclusively to the latest research in tropical and sub-tropical insect science. Each issue brings you original, peer-reviewed research findings on tropical insects and related arthropods, with special emphasis on their environmentally benign and sustainable management.
The Journal"s scope includes arthropod ecology and biodiversity, ethno-entomology, arthropod taxonomy, integrated pest and vector management, and environmental issues. The Journal publishes research papers, short communications and scientific notes. The Journal also includes reports of meetings and obituaries of prominent scientists, book reviews, and review and mini-review articles that are normally submitted at the invitation of the Editors.