{"title":"微生物聚酯制备孔径可控的高孔支架","authors":"Péter Polyák, Ágoston Tóth, Dóra Tátraaljai","doi":"10.3311/ppch.22771","DOIUrl":null,"url":null,"abstract":"Microbial polyesters saw limited use in the field of tissue engineering, even though the biocompatibility of these polymers makes them ideal candidates for this role. The primary factor that hinders the proliferation of microbial polyesters in this market is that their processing with conventional techniques, such as electrospinning or 3D printing, is challenging. However, the full potential of these biopolymers could still be utilized by applying unconventional manufacturing methods, such as those based on the concept of salt leaching. An implementation of this concept facilitates the production of scaffolds that simultaneously have high porosity and excellent permeability. Moreover, the average pore size can also be varied in the range from 50 to 400 µm, which was reported to be optimal for the cultivation of eucaryotic cell cultures. By adjusting the pore size, the scaffold can be tailored to the eucaryotic cells the tissue consists of. Furthermore, we have developed an entirely new computational method for the approximation of the pore size distribution of the scaffolds. The method relies on 3D data reconstructed by the software of a digital optical microscope and also facilitates the modeling of the average pore size of scaffolds. Thus, besides the control of the pore size, our method enables its prediction as well.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Highly Porous Scaffolds with Controllable Pore Size from Microbial Polyesters\",\"authors\":\"Péter Polyák, Ágoston Tóth, Dóra Tátraaljai\",\"doi\":\"10.3311/ppch.22771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial polyesters saw limited use in the field of tissue engineering, even though the biocompatibility of these polymers makes them ideal candidates for this role. The primary factor that hinders the proliferation of microbial polyesters in this market is that their processing with conventional techniques, such as electrospinning or 3D printing, is challenging. However, the full potential of these biopolymers could still be utilized by applying unconventional manufacturing methods, such as those based on the concept of salt leaching. An implementation of this concept facilitates the production of scaffolds that simultaneously have high porosity and excellent permeability. Moreover, the average pore size can also be varied in the range from 50 to 400 µm, which was reported to be optimal for the cultivation of eucaryotic cell cultures. By adjusting the pore size, the scaffold can be tailored to the eucaryotic cells the tissue consists of. Furthermore, we have developed an entirely new computational method for the approximation of the pore size distribution of the scaffolds. The method relies on 3D data reconstructed by the software of a digital optical microscope and also facilitates the modeling of the average pore size of scaffolds. Thus, besides the control of the pore size, our method enables its prediction as well.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.22771\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppch.22771","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of Highly Porous Scaffolds with Controllable Pore Size from Microbial Polyesters
Microbial polyesters saw limited use in the field of tissue engineering, even though the biocompatibility of these polymers makes them ideal candidates for this role. The primary factor that hinders the proliferation of microbial polyesters in this market is that their processing with conventional techniques, such as electrospinning or 3D printing, is challenging. However, the full potential of these biopolymers could still be utilized by applying unconventional manufacturing methods, such as those based on the concept of salt leaching. An implementation of this concept facilitates the production of scaffolds that simultaneously have high porosity and excellent permeability. Moreover, the average pore size can also be varied in the range from 50 to 400 µm, which was reported to be optimal for the cultivation of eucaryotic cell cultures. By adjusting the pore size, the scaffold can be tailored to the eucaryotic cells the tissue consists of. Furthermore, we have developed an entirely new computational method for the approximation of the pore size distribution of the scaffolds. The method relies on 3D data reconstructed by the software of a digital optical microscope and also facilitates the modeling of the average pore size of scaffolds. Thus, besides the control of the pore size, our method enables its prediction as well.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.