{"title":"带混合整数调整的鲁棒优化问题的混合整数近似","authors":"Jan Kronqvist, Boda Li, Jan Rolfes","doi":"10.1007/s11081-023-09843-7","DOIUrl":null,"url":null,"abstract":"Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mixed-integer approximation of robust optimization problems with mixed-integer adjustments\",\"authors\":\"Jan Kronqvist, Boda Li, Jan Rolfes\",\"doi\":\"10.1007/s11081-023-09843-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09843-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11081-023-09843-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A mixed-integer approximation of robust optimization problems with mixed-integer adjustments
Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.