{"title":"带混合整数调整的鲁棒优化问题的混合整数近似","authors":"Jan Kronqvist, Boda Li, Jan Rolfes","doi":"10.1007/s11081-023-09843-7","DOIUrl":null,"url":null,"abstract":"Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mixed-integer approximation of robust optimization problems with mixed-integer adjustments\",\"authors\":\"Jan Kronqvist, Boda Li, Jan Rolfes\",\"doi\":\"10.1007/s11081-023-09843-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.\",\"PeriodicalId\":56141,\"journal\":{\"name\":\"Optimization and Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09843-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11081-023-09843-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A mixed-integer approximation of robust optimization problems with mixed-integer adjustments
Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.