Mohammad Alauthman, Ahmad al-Qerem, Someah Alangari, Ali Mohd Ali, Ahmad Nabo, Amjad Aldweesh, Issam Jebreen, Ammar Almoman, Brij B. Gupta
{"title":"机器学习在经济和技术有限的环境中进行准确的软件开发成本估算","authors":"Mohammad Alauthman, Ahmad al-Qerem, Someah Alangari, Ali Mohd Ali, Ahmad Nabo, Amjad Aldweesh, Issam Jebreen, Ammar Almoman, Brij B. Gupta","doi":"10.4018/ijssci.331753","DOIUrl":null,"url":null,"abstract":"Cost estimation for software development is crucial for project planning and management. Several regression models have been developed to predict software development costs, using historical datasets of previous projects. Accurate cost estimation in software development is heavily influenced by the relevance and quality of the cost estimation dataset and its suitability to the software development environment. The currently available cost estimation datasets are limited to North American and European environments, leaving a gap in the representation of other economically and technically constrained software industries. In this article, the authors evaluate the performance of regression models using the SEERA dataset, which highly represents these constrained environments. This study provides insights into selecting regression models for cost estimation in software development. It highlights the importance of using appropriate models based on the specific software development model and dataset used in the estimation process. In the performance evaluations of eight regression models, including elastic net, lasso regression, linear regression, neural network, RANSACRegressor, random forest, ride regression, and SVM, for cost estimation in different software models, along with correlation coefficients and accuracy indicators, were reported. The results showed that SVM and random forest indicated superior performance. However, the elastic net, lasso regression, linear regression, neural network, and RANSACRegressor models also demonstrated exemplary performance in cost estimation.","PeriodicalId":29913,"journal":{"name":"International Journal of Software Science and Computational Intelligence-IJSSCI","volume":"48 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Accurate Software Development Cost Estimation in Economically and Technically Limited Environments\",\"authors\":\"Mohammad Alauthman, Ahmad al-Qerem, Someah Alangari, Ali Mohd Ali, Ahmad Nabo, Amjad Aldweesh, Issam Jebreen, Ammar Almoman, Brij B. Gupta\",\"doi\":\"10.4018/ijssci.331753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cost estimation for software development is crucial for project planning and management. Several regression models have been developed to predict software development costs, using historical datasets of previous projects. Accurate cost estimation in software development is heavily influenced by the relevance and quality of the cost estimation dataset and its suitability to the software development environment. The currently available cost estimation datasets are limited to North American and European environments, leaving a gap in the representation of other economically and technically constrained software industries. In this article, the authors evaluate the performance of regression models using the SEERA dataset, which highly represents these constrained environments. This study provides insights into selecting regression models for cost estimation in software development. It highlights the importance of using appropriate models based on the specific software development model and dataset used in the estimation process. In the performance evaluations of eight regression models, including elastic net, lasso regression, linear regression, neural network, RANSACRegressor, random forest, ride regression, and SVM, for cost estimation in different software models, along with correlation coefficients and accuracy indicators, were reported. The results showed that SVM and random forest indicated superior performance. However, the elastic net, lasso regression, linear regression, neural network, and RANSACRegressor models also demonstrated exemplary performance in cost estimation.\",\"PeriodicalId\":29913,\"journal\":{\"name\":\"International Journal of Software Science and Computational Intelligence-IJSSCI\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Science and Computational Intelligence-IJSSCI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijssci.331753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Science and Computational Intelligence-IJSSCI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.331753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Machine Learning for Accurate Software Development Cost Estimation in Economically and Technically Limited Environments
Cost estimation for software development is crucial for project planning and management. Several regression models have been developed to predict software development costs, using historical datasets of previous projects. Accurate cost estimation in software development is heavily influenced by the relevance and quality of the cost estimation dataset and its suitability to the software development environment. The currently available cost estimation datasets are limited to North American and European environments, leaving a gap in the representation of other economically and technically constrained software industries. In this article, the authors evaluate the performance of regression models using the SEERA dataset, which highly represents these constrained environments. This study provides insights into selecting regression models for cost estimation in software development. It highlights the importance of using appropriate models based on the specific software development model and dataset used in the estimation process. In the performance evaluations of eight regression models, including elastic net, lasso regression, linear regression, neural network, RANSACRegressor, random forest, ride regression, and SVM, for cost estimation in different software models, along with correlation coefficients and accuracy indicators, were reported. The results showed that SVM and random forest indicated superior performance. However, the elastic net, lasso regression, linear regression, neural network, and RANSACRegressor models also demonstrated exemplary performance in cost estimation.