关于自然和与乘积的卡鲁斯公理

IF 0.5 Q3 MATHEMATICS
Lorenz Halbeisen, Pedro Pablo Pérez-Velasco
{"title":"关于自然和与乘积的卡鲁斯公理","authors":"Lorenz Halbeisen, Pedro Pablo Pérez-Velasco","doi":"10.1007/s40879-023-00696-z","DOIUrl":null,"url":null,"abstract":"Abstract In this paper three main results are presented: a bijection between natural sums and natural products, the completion of the axioms of Carruth for natural sums, and a new characterization of the natural sums in terms of Klaua’s integral ordinals. After introducing some preliminary results, we present two lemmas and a proposition for the proof of the existence of a bijection between natural products and natural sums. Then we prove the incompleteness of Carruth’s axioms by providing two counterexamples, and complete Carruth’s axioms by adding a fifth axiom. Finally, we introduce a characterization of natural sums in terms of Klaua’s integral ordinals and present two families of natural sums, which differ from Hessenberg’s sum.","PeriodicalId":44725,"journal":{"name":"European Journal of Mathematics","volume":"2014 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Carruth’s axioms for natural sums and products\",\"authors\":\"Lorenz Halbeisen, Pedro Pablo Pérez-Velasco\",\"doi\":\"10.1007/s40879-023-00696-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper three main results are presented: a bijection between natural sums and natural products, the completion of the axioms of Carruth for natural sums, and a new characterization of the natural sums in terms of Klaua’s integral ordinals. After introducing some preliminary results, we present two lemmas and a proposition for the proof of the existence of a bijection between natural products and natural sums. Then we prove the incompleteness of Carruth’s axioms by providing two counterexamples, and complete Carruth’s axioms by adding a fifth axiom. Finally, we introduce a characterization of natural sums in terms of Klaua’s integral ordinals and present two families of natural sums, which differ from Hessenberg’s sum.\",\"PeriodicalId\":44725,\"journal\":{\"name\":\"European Journal of Mathematics\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40879-023-00696-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40879-023-00696-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了三个主要结果:自然和与自然积之间的双射,自然和的Carruth公理的完成,以及自然和在Klaua的积分序数上的一个新的表征。在介绍了一些初步结果之后,我们给出了证明自然积与自然和之间双射存在的两个引理和一个命题。然后我们通过提供两个反例来证明Carruth公理的不完备性,并通过添加第五个公理来完成Carruth公理。最后,我们用Klaua的积分序数来描述自然和,并给出了两类不同于海森伯格和的自然和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Carruth’s axioms for natural sums and products
Abstract In this paper three main results are presented: a bijection between natural sums and natural products, the completion of the axioms of Carruth for natural sums, and a new characterization of the natural sums in terms of Klaua’s integral ordinals. After introducing some preliminary results, we present two lemmas and a proposition for the proof of the existence of a bijection between natural products and natural sums. Then we prove the incompleteness of Carruth’s axioms by providing two counterexamples, and complete Carruth’s axioms by adding a fifth axiom. Finally, we introduce a characterization of natural sums in terms of Klaua’s integral ordinals and present two families of natural sums, which differ from Hessenberg’s sum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
78
期刊介绍: The European Journal of Mathematics (EJM) is an international journal that publishes research papers in all fields of mathematics. It also publishes research-survey papers intended to provide nonspecialists with insight into topics of current research in different areas of mathematics. The journal invites authors from all over the world. All contributions are required to meet high standards of quality and originality. EJM has an international editorial board. Coverage in EJM will include: - Algebra - Complex Analysis - Differential Equations - Discrete Mathematics - Functional Analysis - Geometry and Topology - Mathematical Logic and Foundations - Number Theory - Numerical Analysis and Optimization - Probability and Statistics - Real Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信