任意域上Freudenthal-Tits幻方第二行变化的统一表征

IF 0.6 2区 数学 Q3 MATHEMATICS
Anneleen De Schepper, Jeroen Schillewaert, Hendrik van Maldeghem
{"title":"任意域上Freudenthal-Tits幻方第二行变化的统一表征","authors":"Anneleen De Schepper, Jeroen Schillewaert, Hendrik van Maldeghem","doi":"10.4171/jca/75","DOIUrl":null,"url":null,"abstract":"We characterise the projective varieties related to the second row of the Freudenthal–Tits magic square, for both the split and the non-split form, using a common, simple and short geometric axiom system. A special case of our result simultaneously captures the analogues over arbitrary fields of the Severi varieties (comprising the $27$-dimensional $\\mathrm{E\\_6}$ module and some of its subvarieties), as well as the Veronese representations of projective planes over composition division algebras (most notably the Cayley plane). It is the culmination of almost four decades of work since the original 1984 result by Mazzocca and Melone who characterised the quadric Veronese variety over a finite field of odd order. The latter result is a finite counterpart to the characterisation of the complex quadric Veronese surface by Severi from 1901.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":"84 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A uniform characterisation of the varieties of the second row of the Freudenthal–Tits magic square over arbitrary fields\",\"authors\":\"Anneleen De Schepper, Jeroen Schillewaert, Hendrik van Maldeghem\",\"doi\":\"10.4171/jca/75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterise the projective varieties related to the second row of the Freudenthal–Tits magic square, for both the split and the non-split form, using a common, simple and short geometric axiom system. A special case of our result simultaneously captures the analogues over arbitrary fields of the Severi varieties (comprising the $27$-dimensional $\\\\mathrm{E\\\\_6}$ module and some of its subvarieties), as well as the Veronese representations of projective planes over composition division algebras (most notably the Cayley plane). It is the culmination of almost four decades of work since the original 1984 result by Mazzocca and Melone who characterised the quadric Veronese variety over a finite field of odd order. The latter result is a finite counterpart to the characterisation of the complex quadric Veronese surface by Severi from 1901.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/75\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jca/75","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们用一个普通的、简单的、简短的几何公理系统来描述与分裂和非分裂形式的Freudenthal-Tits幻方的第二行相关的投影变体。我们的结果的一个特殊情况同时捕获了Severi变体(包括$27$维$\ mathm {E\_6}$模块及其一些子变体)的任意域上的类似物,以及复合除法代数上投影平面的Veronese表示(最著名的是Cayley平面)。这是自1984年Mazzocca和Melone在奇阶有限域上描述二次维罗内塞变化的最初结果以来,近四十年的工作的高潮。后一种结果与塞维里在1901年对复二次维罗内曲面的描述是有限对应的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A uniform characterisation of the varieties of the second row of the Freudenthal–Tits magic square over arbitrary fields
We characterise the projective varieties related to the second row of the Freudenthal–Tits magic square, for both the split and the non-split form, using a common, simple and short geometric axiom system. A special case of our result simultaneously captures the analogues over arbitrary fields of the Severi varieties (comprising the $27$-dimensional $\mathrm{E\_6}$ module and some of its subvarieties), as well as the Veronese representations of projective planes over composition division algebras (most notably the Cayley plane). It is the culmination of almost four decades of work since the original 1984 result by Mazzocca and Melone who characterised the quadric Veronese variety over a finite field of odd order. The latter result is a finite counterpart to the characterisation of the complex quadric Veronese surface by Severi from 1901.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信