一维增强邻近循环和消失循环及傅里叶变换

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrea D’Agnolo, Masaki Kashiwara
{"title":"一维增强邻近循环和消失循环及傅里叶变换","authors":"Andrea D’Agnolo, Masaki Kashiwara","doi":"10.4171/prims/59-3-4","DOIUrl":null,"url":null,"abstract":"Enhanced ind-sheaves provide a suitable framework for the irregular Riemann–Hilbert correspondence. In this paper, we give some precision on nearby and vanishing cycles for enhanced perverse objects in dimension one. As an application, we give a topological proof of the following fact. Let $\\mathcal{M}$ be a holonomic algebraic $\\mathcal{D}$-module on the affine line, and denote by ${^{\\mathsf{L}}}\\mathcal{M}$ its Fourier–Laplace transform. For a point $a$ on the affine line, denote by $\\ell\\_a$ the corresponding linear function on the dual affine line. Then the vanishing cycles of $\\mathcal{M}$ at $a$ are isomorphic to the graded component of degree $\\ell\\_a$ of the Stokes filtration of ${^{\\mathsf{L}}}\\mathcal{M}$ at infinity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Nearby and Vanishing Cycles in Dimension One and Fourier Transform\",\"authors\":\"Andrea D’Agnolo, Masaki Kashiwara\",\"doi\":\"10.4171/prims/59-3-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhanced ind-sheaves provide a suitable framework for the irregular Riemann–Hilbert correspondence. In this paper, we give some precision on nearby and vanishing cycles for enhanced perverse objects in dimension one. As an application, we give a topological proof of the following fact. Let $\\\\mathcal{M}$ be a holonomic algebraic $\\\\mathcal{D}$-module on the affine line, and denote by ${^{\\\\mathsf{L}}}\\\\mathcal{M}$ its Fourier–Laplace transform. For a point $a$ on the affine line, denote by $\\\\ell\\\\_a$ the corresponding linear function on the dual affine line. Then the vanishing cycles of $\\\\mathcal{M}$ at $a$ are isomorphic to the graded component of degree $\\\\ell\\\\_a$ of the Stokes filtration of ${^{\\\\mathsf{L}}}\\\\mathcal{M}$ at infinity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/59-3-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-3-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

增强的尾轴为不规则黎曼-希尔伯特对应提供了一个合适的框架。本文给出了一维增强反常对象的附近环和消失环的精度。作为应用,我们给出了以下事实的拓扑证明。设$\mathcal{M}$是仿射直线上的一个完整代数$\mathcal{D}$-模,用${^{\mathsf{L}}}\mathcal{M}$表示它的傅里叶-拉普拉斯变换。对于仿射线上的点$a$,用$\ well \_a$表示对应的对偶仿射线上的线性函数。那么$\mathcal{M}$在$a$处的消失周期与${^{\mathsf{L}}}\mathcal{M}$在无穷远处的Stokes滤波的阶次$\ well \_a$同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Nearby and Vanishing Cycles in Dimension One and Fourier Transform
Enhanced ind-sheaves provide a suitable framework for the irregular Riemann–Hilbert correspondence. In this paper, we give some precision on nearby and vanishing cycles for enhanced perverse objects in dimension one. As an application, we give a topological proof of the following fact. Let $\mathcal{M}$ be a holonomic algebraic $\mathcal{D}$-module on the affine line, and denote by ${^{\mathsf{L}}}\mathcal{M}$ its Fourier–Laplace transform. For a point $a$ on the affine line, denote by $\ell\_a$ the corresponding linear function on the dual affine line. Then the vanishing cycles of $\mathcal{M}$ at $a$ are isomorphic to the graded component of degree $\ell\_a$ of the Stokes filtration of ${^{\mathsf{L}}}\mathcal{M}$ at infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信