函数的高斯奇调和平均不等式的改进

Horst Alzer
{"title":"函数的高斯奇调和平均不等式的改进","authors":"Horst Alzer","doi":"10.4171/rsmup/152","DOIUrl":null,"url":null,"abstract":"In 1974, W. Gautschi proved that $$ 1<\\frac{2}{1/\\Gamma(x) +1/\\Gamma(1/x)} \\quad \\textrm{for} \\quad 0\\<x\\neq 1. $$ Here, we present the following refinement: $$ 1<\\Gamma\\Bigl( \\frac{2}{x+1/x}\\Bigr)< \\frac{2}{1/\\Gamma(x) +1/\\Gamma(1/x)}, \\quad 0\\<x\\neq 1. $$","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement of Gautschi's harmonic mean inequality for the gamma function\",\"authors\":\"Horst Alzer\",\"doi\":\"10.4171/rsmup/152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1974, W. Gautschi proved that $$ 1<\\\\frac{2}{1/\\\\Gamma(x) +1/\\\\Gamma(1/x)} \\\\quad \\\\textrm{for} \\\\quad 0\\\\<x\\\\neq 1. $$ Here, we present the following refinement: $$ 1<\\\\Gamma\\\\Bigl( \\\\frac{2}{x+1/x}\\\\Bigr)< \\\\frac{2}{1/\\\\Gamma(x) +1/\\\\Gamma(1/x)}, \\\\quad 0\\\\<x\\\\neq 1. $$\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1974年,W. Gautschi证明了$$ 1<\frac{2}{1/\Gamma(x) +1/\Gamma(1/x)} \quad \textrm{for} \quad 0\本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Refinement of Gautschi's harmonic mean inequality for the gamma function
In 1974, W. Gautschi proved that $$ 1<\frac{2}{1/\Gamma(x) +1/\Gamma(1/x)} \quad \textrm{for} \quad 0\
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信