强球面约化对的对称破缺算子

IF 1.1 2区 数学 Q1 MATHEMATICS
Jan Frahm
{"title":"强球面约化对的对称破缺算子","authors":"Jan Frahm","doi":"10.4171/prims/59-2-2","DOIUrl":null,"url":null,"abstract":"A real reductive pair $(G,H)$ is called strongly spherical if the homogeneous space $(G\\times H)/{\\rm diag}(H)$ is real spherical. This geometric condition is equivalent to the representation theoretic property that ${\\rm dim\\,Hom}_H(\\pi|_H,\\tau)<\\infty$ for all smooth admissible representations $\\pi$ of $G$ and $\\tau$ of $H$. In this paper we explicitly construct for all strongly spherical pairs $(G,H)$ intertwining operators in ${\\rm Hom}_H(\\pi|_H,\\tau)$ for $\\pi$ and $\\tau$ spherical principal series representations of $G$ and $H$. These so-called symmetry breaking operators depend holomorphically on the induction parameters and we further show that they generically span the space ${\\rm Hom}_H(\\pi|_H,\\tau)$. In the special case of multiplicity one pairs we extend our construction to vector-valued principal series representations and obtain generic formulas for the multiplicities between arbitrary principal series. As an application, we prove an early version of the Gross-Prasad conjecture for complex orthogonal groups, and also provide lower bounds for the dimension of the space of Shintani functions.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":"84 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Symmetry Breaking Operators for Strongly Spherical Reductive Pairs\",\"authors\":\"Jan Frahm\",\"doi\":\"10.4171/prims/59-2-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real reductive pair $(G,H)$ is called strongly spherical if the homogeneous space $(G\\\\times H)/{\\\\rm diag}(H)$ is real spherical. This geometric condition is equivalent to the representation theoretic property that ${\\\\rm dim\\\\,Hom}_H(\\\\pi|_H,\\\\tau)<\\\\infty$ for all smooth admissible representations $\\\\pi$ of $G$ and $\\\\tau$ of $H$. In this paper we explicitly construct for all strongly spherical pairs $(G,H)$ intertwining operators in ${\\\\rm Hom}_H(\\\\pi|_H,\\\\tau)$ for $\\\\pi$ and $\\\\tau$ spherical principal series representations of $G$ and $H$. These so-called symmetry breaking operators depend holomorphically on the induction parameters and we further show that they generically span the space ${\\\\rm Hom}_H(\\\\pi|_H,\\\\tau)$. In the special case of multiplicity one pairs we extend our construction to vector-valued principal series representations and obtain generic formulas for the multiplicities between arbitrary principal series. As an application, we prove an early version of the Gross-Prasad conjecture for complex orthogonal groups, and also provide lower bounds for the dimension of the space of Shintani functions.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/59-2-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-2-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

如果齐次空间$(G\times H)/{\rm diag}(H)$是实球面,则实约化对$(G,H)$称为强球面。这个几何条件等价于表示理论性质${\rm dim\,Hom}_H(\pi|_H,\tau)<\infty$对于所有光滑可容许表示$\pi$的$G$和$\tau$的$H$。对于$G$和$H$的$\pi$和$\tau$的球面主级数表示,我们显式构造了${\rm Hom}_H(\pi|_H,\tau)$中所有强球面对$(G,H)$缠结算子。这些所谓的对称破缺算子全纯地依赖于感应参数,我们进一步证明了它们一般地跨越空间${\rm Hom}_H(\pi|_H,\tau)$。在多重1对的特殊情况下,我们将构造推广到向量值主级数表示,得到了任意主级数之间多重性的一般公式。作为应用,我们证明了复正交群的Gross-Prasad猜想的一个早期版本,并给出了Shintani函数空间维数的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry Breaking Operators for Strongly Spherical Reductive Pairs
A real reductive pair $(G,H)$ is called strongly spherical if the homogeneous space $(G\times H)/{\rm diag}(H)$ is real spherical. This geometric condition is equivalent to the representation theoretic property that ${\rm dim\,Hom}_H(\pi|_H,\tau)<\infty$ for all smooth admissible representations $\pi$ of $G$ and $\tau$ of $H$. In this paper we explicitly construct for all strongly spherical pairs $(G,H)$ intertwining operators in ${\rm Hom}_H(\pi|_H,\tau)$ for $\pi$ and $\tau$ spherical principal series representations of $G$ and $H$. These so-called symmetry breaking operators depend holomorphically on the induction parameters and we further show that they generically span the space ${\rm Hom}_H(\pi|_H,\tau)$. In the special case of multiplicity one pairs we extend our construction to vector-valued principal series representations and obtain generic formulas for the multiplicities between arbitrary principal series. As an application, we prove an early version of the Gross-Prasad conjecture for complex orthogonal groups, and also provide lower bounds for the dimension of the space of Shintani functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信