Adrian Robert Mifsud, Federica Cotecchia, Francesca Santaloia, Francesco Cafaro
{"title":"中高密度软泥晶:微观结构特征对状态和压缩性的影响","authors":"Adrian Robert Mifsud, Federica Cotecchia, Francesca Santaloia, Francesco Cafaro","doi":"10.1139/cgj-2023-0190","DOIUrl":null,"url":null,"abstract":"Three soft rock facies of the Middle Globigerina Limestone (MGL) from Malta, of mineralogical composition and index properties similar to some medium-high density Chalk facies, are disaggregated through prolonged agitation in water, to create reconstituted samples. The significant activity of their clay-sized calcite grains can impart a medium-high plasticity. SEM analyses of natural and reconstituted samples show the natural bonding as interlock, possibly induced by cohesive clay-sized calcite grains during the sediment compaction. Micro-analyses and compression test data also show that local calcite crystal over-growth under burial has reduced further the soft rock porosity, making it lower than that of the reconstituted material one-dimensionally compressed to the geological preconsolidation pressure. Nonetheless, the low stress sensitivity of natural MGL suggests that this interlock bonding does not strengthen much the material with respect to the highly compressed reconstituted soil. The natural MGL is of very low permeability, which reduces further with compression. Concurrently, the soft rock creep coefficient increases, reaching values far above those typical for clays. The microstructural features and the mechanical properties of the different MGL facies are shown to be sensitive to clay mineral content.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"35 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medium-high density soft micrites: Impact of microstructural features on state and compressibility\",\"authors\":\"Adrian Robert Mifsud, Federica Cotecchia, Francesca Santaloia, Francesco Cafaro\",\"doi\":\"10.1139/cgj-2023-0190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three soft rock facies of the Middle Globigerina Limestone (MGL) from Malta, of mineralogical composition and index properties similar to some medium-high density Chalk facies, are disaggregated through prolonged agitation in water, to create reconstituted samples. The significant activity of their clay-sized calcite grains can impart a medium-high plasticity. SEM analyses of natural and reconstituted samples show the natural bonding as interlock, possibly induced by cohesive clay-sized calcite grains during the sediment compaction. Micro-analyses and compression test data also show that local calcite crystal over-growth under burial has reduced further the soft rock porosity, making it lower than that of the reconstituted material one-dimensionally compressed to the geological preconsolidation pressure. Nonetheless, the low stress sensitivity of natural MGL suggests that this interlock bonding does not strengthen much the material with respect to the highly compressed reconstituted soil. The natural MGL is of very low permeability, which reduces further with compression. Concurrently, the soft rock creep coefficient increases, reaching values far above those typical for clays. The microstructural features and the mechanical properties of the different MGL facies are shown to be sensitive to clay mineral content.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0190\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0190","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Medium-high density soft micrites: Impact of microstructural features on state and compressibility
Three soft rock facies of the Middle Globigerina Limestone (MGL) from Malta, of mineralogical composition and index properties similar to some medium-high density Chalk facies, are disaggregated through prolonged agitation in water, to create reconstituted samples. The significant activity of their clay-sized calcite grains can impart a medium-high plasticity. SEM analyses of natural and reconstituted samples show the natural bonding as interlock, possibly induced by cohesive clay-sized calcite grains during the sediment compaction. Micro-analyses and compression test data also show that local calcite crystal over-growth under burial has reduced further the soft rock porosity, making it lower than that of the reconstituted material one-dimensionally compressed to the geological preconsolidation pressure. Nonetheless, the low stress sensitivity of natural MGL suggests that this interlock bonding does not strengthen much the material with respect to the highly compressed reconstituted soil. The natural MGL is of very low permeability, which reduces further with compression. Concurrently, the soft rock creep coefficient increases, reaching values far above those typical for clays. The microstructural features and the mechanical properties of the different MGL facies are shown to be sensitive to clay mineral content.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.