{"title":"无约束白噪声下一般线性逆问题的无噪声正则化","authors":"Tim Jahn","doi":"10.1137/22m1506675","DOIUrl":null,"url":null,"abstract":"In this note we solve a general statistical inverse problem under absence of knowledge of both the noise level and the noise distribution via application of the (modified) heuristic discrepancy principle. Hereby the unbounded (non-Gaussian) noise is controlled via introducing an auxiliary discretization dimension and choosing it in an adaptive fashion. We first show convergence for completely arbitrary compact forward operator and ground solution. Then the uncertainty of reaching the optimal convergence rate is quantified in a specific Bayesian-like environment. We conclude with numerical experiments.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise Level Free Regularization of General Linear Inverse Problems under Unconstrained White Noise\",\"authors\":\"Tim Jahn\",\"doi\":\"10.1137/22m1506675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we solve a general statistical inverse problem under absence of knowledge of both the noise level and the noise distribution via application of the (modified) heuristic discrepancy principle. Hereby the unbounded (non-Gaussian) noise is controlled via introducing an auxiliary discretization dimension and choosing it in an adaptive fashion. We first show convergence for completely arbitrary compact forward operator and ground solution. Then the uncertainty of reaching the optimal convergence rate is quantified in a specific Bayesian-like environment. We conclude with numerical experiments.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1506675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1506675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Noise Level Free Regularization of General Linear Inverse Problems under Unconstrained White Noise
In this note we solve a general statistical inverse problem under absence of knowledge of both the noise level and the noise distribution via application of the (modified) heuristic discrepancy principle. Hereby the unbounded (non-Gaussian) noise is controlled via introducing an auxiliary discretization dimension and choosing it in an adaptive fashion. We first show convergence for completely arbitrary compact forward operator and ground solution. Then the uncertainty of reaching the optimal convergence rate is quantified in a specific Bayesian-like environment. We conclude with numerical experiments.