{"title":"无约束白噪声下一般线性逆问题的无噪声正则化","authors":"Tim Jahn","doi":"10.1137/22m1506675","DOIUrl":null,"url":null,"abstract":"In this note we solve a general statistical inverse problem under absence of knowledge of both the noise level and the noise distribution via application of the (modified) heuristic discrepancy principle. Hereby the unbounded (non-Gaussian) noise is controlled via introducing an auxiliary discretization dimension and choosing it in an adaptive fashion. We first show convergence for completely arbitrary compact forward operator and ground solution. Then the uncertainty of reaching the optimal convergence rate is quantified in a specific Bayesian-like environment. We conclude with numerical experiments.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"11 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise Level Free Regularization of General Linear Inverse Problems under Unconstrained White Noise\",\"authors\":\"Tim Jahn\",\"doi\":\"10.1137/22m1506675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we solve a general statistical inverse problem under absence of knowledge of both the noise level and the noise distribution via application of the (modified) heuristic discrepancy principle. Hereby the unbounded (non-Gaussian) noise is controlled via introducing an auxiliary discretization dimension and choosing it in an adaptive fashion. We first show convergence for completely arbitrary compact forward operator and ground solution. Then the uncertainty of reaching the optimal convergence rate is quantified in a specific Bayesian-like environment. We conclude with numerical experiments.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1506675\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1506675","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Noise Level Free Regularization of General Linear Inverse Problems under Unconstrained White Noise
In this note we solve a general statistical inverse problem under absence of knowledge of both the noise level and the noise distribution via application of the (modified) heuristic discrepancy principle. Hereby the unbounded (non-Gaussian) noise is controlled via introducing an auxiliary discretization dimension and choosing it in an adaptive fashion. We first show convergence for completely arbitrary compact forward operator and ground solution. Then the uncertainty of reaching the optimal convergence rate is quantified in a specific Bayesian-like environment. We conclude with numerical experiments.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.