无限维指数族估计与Fisher散度

Kenji Fukumizu
{"title":"无限维指数族估计与Fisher散度","authors":"Kenji Fukumizu","doi":"10.1007/s41884-023-00122-z","DOIUrl":null,"url":null,"abstract":"Abstract Infinite dimensional exponential families have been theoretically studied, but their practical applications are still limited because empirical estimation is not straightforward. This paper first gives a brief survey of studies on the estimation method for infinite-dimensional exponential families. The method uses score matching, which is based on the Fisher divergence. The second topic is to investigate the Fisher divergence as a member of an extended family of divergences, which employ operators in defining divergences.","PeriodicalId":93762,"journal":{"name":"Information geometry","volume":"60 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation with infinite-dimensional exponential family and Fisher divergence\",\"authors\":\"Kenji Fukumizu\",\"doi\":\"10.1007/s41884-023-00122-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Infinite dimensional exponential families have been theoretically studied, but their practical applications are still limited because empirical estimation is not straightforward. This paper first gives a brief survey of studies on the estimation method for infinite-dimensional exponential families. The method uses score matching, which is based on the Fisher divergence. The second topic is to investigate the Fisher divergence as a member of an extended family of divergences, which employ operators in defining divergences.\",\"PeriodicalId\":93762,\"journal\":{\"name\":\"Information geometry\",\"volume\":\"60 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41884-023-00122-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41884-023-00122-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无限维指数族已经在理论上得到了研究,但由于经验估计并不简单,其实际应用仍然受到限制。本文首先简要介绍了无限维指数族估计方法的研究概况。该方法使用基于Fisher散度的分数匹配。第二个主题是研究Fisher散度作为一个扩展的散度族的成员,它使用算子来定义散度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation with infinite-dimensional exponential family and Fisher divergence
Abstract Infinite dimensional exponential families have been theoretically studied, but their practical applications are still limited because empirical estimation is not straightforward. This paper first gives a brief survey of studies on the estimation method for infinite-dimensional exponential families. The method uses score matching, which is based on the Fisher divergence. The second topic is to investigate the Fisher divergence as a member of an extended family of divergences, which employ operators in defining divergences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信