有限时间弱过程的最优功波动

Pierre Nazé
{"title":"有限时间弱过程的最优功波动","authors":"Pierre Nazé","doi":"10.1103/physreve.108.054118","DOIUrl":null,"url":null,"abstract":"The optimal protocols for the irreversible work achieve their maximum usefulness if their work fluctuations are the smallest ones. In this work, for classical and isothermal processes subjected to finite-time and weak drivings, I show that the optimal protocol for the irreversible work is the same for the variance of work. This conclusion is based on the fluctuation-dissipation relation $\\overline{W}=\\mathrm{\\ensuremath{\\Delta}}F+\\ensuremath{\\beta}{\\ensuremath{\\sigma}}_{W}^{2}/2$, extended now to finite-time and weak drivings. To illustrate it, I analyze a white-noise overdamped Brownian motion subjected to an anharmonic stiffening trap for fast processes. By contrast with the already known results in the literature for classical systems, the linear-response theory approach of the work probabilistic distribution is not a Gaussian reduction.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"33 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal work fluctuations for finite-time and weak processes\",\"authors\":\"Pierre Nazé\",\"doi\":\"10.1103/physreve.108.054118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal protocols for the irreversible work achieve their maximum usefulness if their work fluctuations are the smallest ones. In this work, for classical and isothermal processes subjected to finite-time and weak drivings, I show that the optimal protocol for the irreversible work is the same for the variance of work. This conclusion is based on the fluctuation-dissipation relation $\\\\overline{W}=\\\\mathrm{\\\\ensuremath{\\\\Delta}}F+\\\\ensuremath{\\\\beta}{\\\\ensuremath{\\\\sigma}}_{W}^{2}/2$, extended now to finite-time and weak drivings. To illustrate it, I analyze a white-noise overdamped Brownian motion subjected to an anharmonic stiffening trap for fast processes. By contrast with the already known results in the literature for classical systems, the linear-response theory approach of the work probabilistic distribution is not a Gaussian reduction.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":\"33 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.108.054118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.108.054118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于不可逆工作的最优协议,当其工作波动最小时,其可用性最大。在这项工作中,对于受有限时间和弱驱动的经典和等温过程,我表明不可逆工作的最佳协议与工作方差相同。这个结论是基于波动耗散关系$\overline{W}=\mathrm{\ensuremath{\Delta}}F+\ensuremath{\beta}{\ensuremath{\sigma}}_{W}^{2}/2$,现在推广到有限时间和弱驱动。为了说明这一点,我分析了一个白噪声过阻尼的布朗运动,该运动受到快速过程的非谐波强化陷阱的影响。与文献中已知的经典系统的结果相比,功概率分布的线性响应理论方法不是高斯约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal work fluctuations for finite-time and weak processes
The optimal protocols for the irreversible work achieve their maximum usefulness if their work fluctuations are the smallest ones. In this work, for classical and isothermal processes subjected to finite-time and weak drivings, I show that the optimal protocol for the irreversible work is the same for the variance of work. This conclusion is based on the fluctuation-dissipation relation $\overline{W}=\mathrm{\ensuremath{\Delta}}F+\ensuremath{\beta}{\ensuremath{\sigma}}_{W}^{2}/2$, extended now to finite-time and weak drivings. To illustrate it, I analyze a white-noise overdamped Brownian motion subjected to an anharmonic stiffening trap for fast processes. By contrast with the already known results in the literature for classical systems, the linear-response theory approach of the work probabilistic distribution is not a Gaussian reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信