基于计算流体力学(CFD)的局部地暖系统对居住者热舒适和能耗的影响

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2023-11-13 DOI:10.3390/fluids8110299
Hassan J. Dakkama, Ahmed Jawad Khaleel, Ahmed Qasim Ahmed, Wisam A. M. Al-Shohani, Hayder M. B. Obaida
{"title":"基于计算流体力学(CFD)的局部地暖系统对居住者热舒适和能耗的影响","authors":"Hassan J. Dakkama, Ahmed Jawad Khaleel, Ahmed Qasim Ahmed, Wisam A. M. Al-Shohani, Hayder M. B. Obaida","doi":"10.3390/fluids8110299","DOIUrl":null,"url":null,"abstract":"In this article, the influence of splitting a local underfloor air distribution system (UFAD) on indoor thermal comfort for three occupants was studied numerically. A validated computational fluid dynamics (CFD) model was employed in this investigation. The proposed heating system was evaluated and analyzed for different values of air temperature and supply velocity. Providing suitable thermal comfort and saving energy are considered the main evaluation indexes for this study. Three cases, cases 2, 3, and 4, of the proposed local UFAD system were compared with a traditional heating system case, case 1. The supplying air velocity and air temperature in the reference case were 0.5 m/s and 29 °C, while in cases 2, 3, and 4, they were 0.4 m/s and 29 °C, 28 °C, and 27 °C, respectively. The results show that acceptable indoor human thermal comfort and energy demand reduction were achieved by using the splitting UFAD concept.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"53 2","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Local Floor Heating System on Occupants’ Thermal Comfort and Energy Consumption Using Computational Fluid Dynamics (CFD)\",\"authors\":\"Hassan J. Dakkama, Ahmed Jawad Khaleel, Ahmed Qasim Ahmed, Wisam A. M. Al-Shohani, Hayder M. B. Obaida\",\"doi\":\"10.3390/fluids8110299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the influence of splitting a local underfloor air distribution system (UFAD) on indoor thermal comfort for three occupants was studied numerically. A validated computational fluid dynamics (CFD) model was employed in this investigation. The proposed heating system was evaluated and analyzed for different values of air temperature and supply velocity. Providing suitable thermal comfort and saving energy are considered the main evaluation indexes for this study. Three cases, cases 2, 3, and 4, of the proposed local UFAD system were compared with a traditional heating system case, case 1. The supplying air velocity and air temperature in the reference case were 0.5 m/s and 29 °C, while in cases 2, 3, and 4, they were 0.4 m/s and 29 °C, 28 °C, and 27 °C, respectively. The results show that acceptable indoor human thermal comfort and energy demand reduction were achieved by using the splitting UFAD concept.\",\"PeriodicalId\":12397,\"journal\":{\"name\":\"Fluids\",\"volume\":\"53 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids8110299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids8110299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过数值模拟研究了局部地板下风组织系统(UFAD)对3人室内热舒适性的影响。本研究采用了一个经过验证的计算流体动力学(CFD)模型。在不同的空气温度和送风速度下,对所提出的采暖系统进行了评价和分析。提供适宜的热舒适和节能是本研究的主要评价指标。将提出的局部UFAD系统的案例2、案例3和案例4与传统供暖系统案例1进行了比较。参考工况的送风速度和送风温度分别为0.5 m/s和29°C,工况2、3和4的送风速度和温度分别为0.4 m/s和29°C、28°C和27°C。结果表明,采用分体式UFAD设计方案,可获得较好的室内人体热舒适,降低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Local Floor Heating System on Occupants’ Thermal Comfort and Energy Consumption Using Computational Fluid Dynamics (CFD)
In this article, the influence of splitting a local underfloor air distribution system (UFAD) on indoor thermal comfort for three occupants was studied numerically. A validated computational fluid dynamics (CFD) model was employed in this investigation. The proposed heating system was evaluated and analyzed for different values of air temperature and supply velocity. Providing suitable thermal comfort and saving energy are considered the main evaluation indexes for this study. Three cases, cases 2, 3, and 4, of the proposed local UFAD system were compared with a traditional heating system case, case 1. The supplying air velocity and air temperature in the reference case were 0.5 m/s and 29 °C, while in cases 2, 3, and 4, they were 0.4 m/s and 29 °C, 28 °C, and 27 °C, respectively. The results show that acceptable indoor human thermal comfort and energy demand reduction were achieved by using the splitting UFAD concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信