{"title":"埃塞俄比亚奥罗米亚上游青尼罗河流域土地利用时空变化对环境可持续性产沙径流的响应","authors":"Bekan Chelkeba Tumsa, Fekadu Fufa Feyessa, Kiyya Tesfa Tullu, Abeba Chala Guder","doi":"10.2166/h2oj.2023.072","DOIUrl":null,"url":null,"abstract":"Abstract Modeling and mapping hydrological responses of runoff and sediment yield to spatiotemporal land use changes are crucial concerning environmental sustainability. The research was aimed at quantifying the spatiotemporal effects of land use on runoff and sediment yields using three land use satellite images and the SWAT+ model. The increase in agriculture, settlement, and decreasing forest goes to the possibility of increasing sediment yield and runoff by 53.2 and 56.5%, respectively, affecting ecosystems. The areas vulnerable to high runoff were found at the lower and middle reaches with the annual average runoff of 10,825.1, 11,972.9, and 13,452 mm for each respective scenario. On the other hand, most of the soil erosion-prone areas designated as severe in the second and third scenarios were covered by agriculture and shrubland, with annual sediment yields of 301.5 and 267.5 tons, respectively. Deforestation for agriculture expansion has a significant role in environmental degradation, as forests play an irreplaceable role in ecological resilience. Generally, the dominant land uses that instigate soil erosion, runoff, and sediment yield are agriculture, shrubland, and deforestation. The simulation of runoff and sediment yield in response to land use change using the SWAT+ model is more scientifically reliable and acceptable.","PeriodicalId":36060,"journal":{"name":"H2Open Journal","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal changes of land use in response to runoff and sediment yield for environmental sustainability in the upper Blue Nile Basin, Oromiyaa, Ethiopia\",\"authors\":\"Bekan Chelkeba Tumsa, Fekadu Fufa Feyessa, Kiyya Tesfa Tullu, Abeba Chala Guder\",\"doi\":\"10.2166/h2oj.2023.072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Modeling and mapping hydrological responses of runoff and sediment yield to spatiotemporal land use changes are crucial concerning environmental sustainability. The research was aimed at quantifying the spatiotemporal effects of land use on runoff and sediment yields using three land use satellite images and the SWAT+ model. The increase in agriculture, settlement, and decreasing forest goes to the possibility of increasing sediment yield and runoff by 53.2 and 56.5%, respectively, affecting ecosystems. The areas vulnerable to high runoff were found at the lower and middle reaches with the annual average runoff of 10,825.1, 11,972.9, and 13,452 mm for each respective scenario. On the other hand, most of the soil erosion-prone areas designated as severe in the second and third scenarios were covered by agriculture and shrubland, with annual sediment yields of 301.5 and 267.5 tons, respectively. Deforestation for agriculture expansion has a significant role in environmental degradation, as forests play an irreplaceable role in ecological resilience. Generally, the dominant land uses that instigate soil erosion, runoff, and sediment yield are agriculture, shrubland, and deforestation. The simulation of runoff and sediment yield in response to land use change using the SWAT+ model is more scientifically reliable and acceptable.\",\"PeriodicalId\":36060,\"journal\":{\"name\":\"H2Open Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"H2Open Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/h2oj.2023.072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"H2Open Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/h2oj.2023.072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Spatiotemporal changes of land use in response to runoff and sediment yield for environmental sustainability in the upper Blue Nile Basin, Oromiyaa, Ethiopia
Abstract Modeling and mapping hydrological responses of runoff and sediment yield to spatiotemporal land use changes are crucial concerning environmental sustainability. The research was aimed at quantifying the spatiotemporal effects of land use on runoff and sediment yields using three land use satellite images and the SWAT+ model. The increase in agriculture, settlement, and decreasing forest goes to the possibility of increasing sediment yield and runoff by 53.2 and 56.5%, respectively, affecting ecosystems. The areas vulnerable to high runoff were found at the lower and middle reaches with the annual average runoff of 10,825.1, 11,972.9, and 13,452 mm for each respective scenario. On the other hand, most of the soil erosion-prone areas designated as severe in the second and third scenarios were covered by agriculture and shrubland, with annual sediment yields of 301.5 and 267.5 tons, respectively. Deforestation for agriculture expansion has a significant role in environmental degradation, as forests play an irreplaceable role in ecological resilience. Generally, the dominant land uses that instigate soil erosion, runoff, and sediment yield are agriculture, shrubland, and deforestation. The simulation of runoff and sediment yield in response to land use change using the SWAT+ model is more scientifically reliable and acceptable.