基于径向热膨胀的高海拔球面间隙放电流-前导过渡模型修正

IF 1.6 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Jianghai Geng, Guo Lin, Ping Wang, Yujian Ding, Yang Ding, Hua Yu
{"title":"基于径向热膨胀的高海拔球面间隙放电流-前导过渡模型修正","authors":"Jianghai Geng, Guo Lin, Ping Wang, Yujian Ding, Yang Ding, Hua Yu","doi":"10.1088/2058-6272/ad0c1c","DOIUrl":null,"url":null,"abstract":"Abstract Historically, the streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis, with limited attention paid to the sphere-plane gap at high altitude analysis. In this paper, the sphere-plane gap discharge tests were carried out under the gap distance of 5m at the Qinghai Ultra High Voltage (UHV) test base at an altitude of 2200m. The experiments measured the physical parameters such as discharge current, electric field intensity and instantaneous optical power. The duration of the dark period and the critical charge of streamer-to-leader transition were obtained at high altitude. Based on radial thermal expansion of streamer stem, we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude, and calculated the stem temperature, stem radii and the duration of streamer-to-leader transition. Compared with measured duration of sphere-plane electrode discharge at an altitude of 2200m, the error rate of the modified model was 0.94%, while the classical model was 6.97%, demonstrating the effectiveness of the modified model. From the comparisons and analysis, several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.","PeriodicalId":20250,"journal":{"name":"Plasma Science & Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude\",\"authors\":\"Jianghai Geng, Guo Lin, Ping Wang, Yujian Ding, Yang Ding, Hua Yu\",\"doi\":\"10.1088/2058-6272/ad0c1c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Historically, the streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis, with limited attention paid to the sphere-plane gap at high altitude analysis. In this paper, the sphere-plane gap discharge tests were carried out under the gap distance of 5m at the Qinghai Ultra High Voltage (UHV) test base at an altitude of 2200m. The experiments measured the physical parameters such as discharge current, electric field intensity and instantaneous optical power. The duration of the dark period and the critical charge of streamer-to-leader transition were obtained at high altitude. Based on radial thermal expansion of streamer stem, we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude, and calculated the stem temperature, stem radii and the duration of streamer-to-leader transition. Compared with measured duration of sphere-plane electrode discharge at an altitude of 2200m, the error rate of the modified model was 0.94%, while the classical model was 6.97%, demonstrating the effectiveness of the modified model. From the comparisons and analysis, several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.\",\"PeriodicalId\":20250,\"journal\":{\"name\":\"Plasma Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-6272/ad0c1c\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad0c1c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

历史上,对流线-前导转换的研究主要集中在杆面间隙和低空分析上,而对球面间隙的高空分析关注较少。本文在海拔2200m的青海特高压(UHV)试验基地进行了间隙距离为5m的球平面间隙放电试验。实验测量了放电电流、电场强度、瞬时光功率等物理参数。在高海拔条件下,获得了暗期持续时间和流子向先导过渡的临界电荷量。基于拖缆杆的径向热膨胀特性,建立了改进的高空球平面间隙放电拖缆向先导过渡模型,并计算了拖缆杆温度、拖缆杆半径和拖缆向先导过渡时间。与海拔2200m的球面电极放电持续时间测量值相比,修正模型的错误率为0.94%,而经典模型的错误率为6.97%,表明了修正模型的有效性。通过比较和分析,提出了改进数值模型的几点建议,以进一步定量研究领导者初始化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude
Abstract Historically, the streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis, with limited attention paid to the sphere-plane gap at high altitude analysis. In this paper, the sphere-plane gap discharge tests were carried out under the gap distance of 5m at the Qinghai Ultra High Voltage (UHV) test base at an altitude of 2200m. The experiments measured the physical parameters such as discharge current, electric field intensity and instantaneous optical power. The duration of the dark period and the critical charge of streamer-to-leader transition were obtained at high altitude. Based on radial thermal expansion of streamer stem, we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude, and calculated the stem temperature, stem radii and the duration of streamer-to-leader transition. Compared with measured duration of sphere-plane electrode discharge at an altitude of 2200m, the error rate of the modified model was 0.94%, while the classical model was 6.97%, demonstrating the effectiveness of the modified model. From the comparisons and analysis, several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Science & Technology
Plasma Science & Technology 物理-物理:流体与等离子体
CiteScore
3.10
自引率
11.80%
发文量
3773
审稿时长
3.8 months
期刊介绍: PST assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner. A Publication of the Institute of Plasma Physics, Chinese Academy of Sciences and the Chinese Society of Theoretical and Applied Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信