Yikang Jia, Tianhui Li, Rui Zhang, Pengyu Zhao, Zifeng Wang, Min Chen, Li Guo, Dingxin Liu
{"title":"表面等离子体活化空气与等离子体射流组合制备的不同活性物质的等离子体活性盐水的不同杀菌能力","authors":"Yikang Jia, Tianhui Li, Rui Zhang, Pengyu Zhao, Zifeng Wang, Min Chen, Li Guo, Dingxin Liu","doi":"10.1088/2058-6272/ad0c1f","DOIUrl":null,"url":null,"abstract":"Abstract Plasma-activated water (PAW), as an extended form of cold atmospheric-pressure plasma, greatly expands the application of plasma-based technology. The biological effects of PAW are closely related to the aqueous reactive species, which can be regulated by the activation process. In this study, the surface plasma-activated air (SAA) and the He + O2 plasma jet (Jet) were parallelly combined (the SAA + Jet combination) or sequential combined (the SAA → Jet combination and the Jet → SAA combination) to prepare plasma-activated saline (PAS). The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone. The concentrations of H2O2 and NO2− were higher in the PAS activated by the Jet → SAA combination, while ONOO− were close in the three kinds of PAS and 1O2 were highest in the PAS activated by the SAA + Jet combination. The analysis of scavengers also demonstrated that H2O2, 1O2, and ONOO‒ in the PAS activated by the SAA + Jet combination, and 1O2 in the PAS activated by the Jet → SAA combination played critical roles in bactericidal effects. Further, the effective placement time of the three PAS varied and the PAS activated by the Jet → SAA combination could also inactivate 2.6-log10 of the MRSA cells after placement for more than 60 min. The regulation of reactive species in plasma-activated water through different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field.","PeriodicalId":20250,"journal":{"name":"Plasma Science & Technology","volume":"58 3","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different bactericidal abilities of plasma-activated saline with varied reactive species prepared by the combinations of surface plasma-activated air and plasma jet\",\"authors\":\"Yikang Jia, Tianhui Li, Rui Zhang, Pengyu Zhao, Zifeng Wang, Min Chen, Li Guo, Dingxin Liu\",\"doi\":\"10.1088/2058-6272/ad0c1f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Plasma-activated water (PAW), as an extended form of cold atmospheric-pressure plasma, greatly expands the application of plasma-based technology. The biological effects of PAW are closely related to the aqueous reactive species, which can be regulated by the activation process. In this study, the surface plasma-activated air (SAA) and the He + O2 plasma jet (Jet) were parallelly combined (the SAA + Jet combination) or sequential combined (the SAA → Jet combination and the Jet → SAA combination) to prepare plasma-activated saline (PAS). The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone. The concentrations of H2O2 and NO2− were higher in the PAS activated by the Jet → SAA combination, while ONOO− were close in the three kinds of PAS and 1O2 were highest in the PAS activated by the SAA + Jet combination. The analysis of scavengers also demonstrated that H2O2, 1O2, and ONOO‒ in the PAS activated by the SAA + Jet combination, and 1O2 in the PAS activated by the Jet → SAA combination played critical roles in bactericidal effects. Further, the effective placement time of the three PAS varied and the PAS activated by the Jet → SAA combination could also inactivate 2.6-log10 of the MRSA cells after placement for more than 60 min. The regulation of reactive species in plasma-activated water through different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field.\",\"PeriodicalId\":20250,\"journal\":{\"name\":\"Plasma Science & Technology\",\"volume\":\"58 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-6272/ad0c1f\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad0c1f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Different bactericidal abilities of plasma-activated saline with varied reactive species prepared by the combinations of surface plasma-activated air and plasma jet
Abstract Plasma-activated water (PAW), as an extended form of cold atmospheric-pressure plasma, greatly expands the application of plasma-based technology. The biological effects of PAW are closely related to the aqueous reactive species, which can be regulated by the activation process. In this study, the surface plasma-activated air (SAA) and the He + O2 plasma jet (Jet) were parallelly combined (the SAA + Jet combination) or sequential combined (the SAA → Jet combination and the Jet → SAA combination) to prepare plasma-activated saline (PAS). The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone. The concentrations of H2O2 and NO2− were higher in the PAS activated by the Jet → SAA combination, while ONOO− were close in the three kinds of PAS and 1O2 were highest in the PAS activated by the SAA + Jet combination. The analysis of scavengers also demonstrated that H2O2, 1O2, and ONOO‒ in the PAS activated by the SAA + Jet combination, and 1O2 in the PAS activated by the Jet → SAA combination played critical roles in bactericidal effects. Further, the effective placement time of the three PAS varied and the PAS activated by the Jet → SAA combination could also inactivate 2.6-log10 of the MRSA cells after placement for more than 60 min. The regulation of reactive species in plasma-activated water through different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field.
期刊介绍:
PST assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner.
A Publication of the Institute of Plasma Physics, Chinese Academy of Sciences and the Chinese Society of Theoretical and Applied Mechanics.