大型二部图的高效核心维护

Wensheng Luo, Qiaoyuan Yang, Yixiang Fang, Xu Zhou
{"title":"大型二部图的高效核心维护","authors":"Wensheng Luo, Qiaoyuan Yang, Yixiang Fang, Xu Zhou","doi":"10.1145/3617329","DOIUrl":null,"url":null,"abstract":"As an important cohesive subgraph model in bipartite graphs, the (α, β)-core (a.k.a. bi-core) has found a wide spectrum of real-world applications, such as product recommendation, fraudster detection, and community search. In these applications, the bipartite graphs are often large and dynamic, where vertices and edges are inserted and deleted frequently, so it is costly to recompute (α, β)-cores from scratch when the graph has changed. Recently, a few works have attempted to study how to maintain (α, β)-cores in the dynamic bipartite graph, but their performance is still far from perfect, due to the huge size of graphs and their frequent changes. To alleviate this issue, in this paper we present efficient (α, β)-core maintenance algorithms over bipartite graphs. We first introduce a novel concept, called bi-core numbers, for the vertices of bipartite graphs. Based on this concept, we theoretically analyze the effect of inserting and deleting edges on the changes of vertices' bi-core numbers, which can be further used to narrow down the scope of the updates, thereby reducing the computational redundancy. We then propose efficient (α, β)-core maintenance algorithms for handling the edge insertion and edge deletion respectively, by exploiting the above theoretical analysis results. Finally, extensive experimental evaluations are performed on both real and synthetic datasets, and the results show that our proposed algorithms are up to two orders of magnitude faster than the state-of-the-art approaches.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":"35 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Core Maintenance in Large Bipartite Graphs\",\"authors\":\"Wensheng Luo, Qiaoyuan Yang, Yixiang Fang, Xu Zhou\",\"doi\":\"10.1145/3617329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an important cohesive subgraph model in bipartite graphs, the (α, β)-core (a.k.a. bi-core) has found a wide spectrum of real-world applications, such as product recommendation, fraudster detection, and community search. In these applications, the bipartite graphs are often large and dynamic, where vertices and edges are inserted and deleted frequently, so it is costly to recompute (α, β)-cores from scratch when the graph has changed. Recently, a few works have attempted to study how to maintain (α, β)-cores in the dynamic bipartite graph, but their performance is still far from perfect, due to the huge size of graphs and their frequent changes. To alleviate this issue, in this paper we present efficient (α, β)-core maintenance algorithms over bipartite graphs. We first introduce a novel concept, called bi-core numbers, for the vertices of bipartite graphs. Based on this concept, we theoretically analyze the effect of inserting and deleting edges on the changes of vertices' bi-core numbers, which can be further used to narrow down the scope of the updates, thereby reducing the computational redundancy. We then propose efficient (α, β)-core maintenance algorithms for handling the edge insertion and edge deletion respectively, by exploiting the above theoretical analysis results. Finally, extensive experimental evaluations are performed on both real and synthetic datasets, and the results show that our proposed algorithms are up to two orders of magnitude faster than the state-of-the-art approaches.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\"35 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为二部图中重要的内聚子图模型,(α, β)-核(又称双核)在产品推荐、欺诈者检测和社区搜索等方面有着广泛的应用。在这些应用中,二部图通常是大而动态的,其中顶点和边被频繁地插入和删除,因此当图发生变化时,从头开始重新计算(α, β)核是昂贵的。近年来,已有一些研究试图研究如何在动态二部图中维持(α, β)-核,但由于图的规模庞大且变化频繁,其性能还远远不够完善。为了解决这个问题,本文提出了高效的二部图(α, β)核维护算法。我们首先为二部图的顶点引入了一个新的概念,称为双核数。基于这一概念,我们从理论上分析了插入和删除边对顶点双核数变化的影响,可以进一步缩小更新的范围,从而减少计算冗余。然后,利用上述理论分析结果,我们分别提出了有效的(α, β)核维护算法来处理边缘插入和边缘删除。最后,在真实和合成数据集上进行了广泛的实验评估,结果表明,我们提出的算法比最先进的方法快两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Core Maintenance in Large Bipartite Graphs
As an important cohesive subgraph model in bipartite graphs, the (α, β)-core (a.k.a. bi-core) has found a wide spectrum of real-world applications, such as product recommendation, fraudster detection, and community search. In these applications, the bipartite graphs are often large and dynamic, where vertices and edges are inserted and deleted frequently, so it is costly to recompute (α, β)-cores from scratch when the graph has changed. Recently, a few works have attempted to study how to maintain (α, β)-cores in the dynamic bipartite graph, but their performance is still far from perfect, due to the huge size of graphs and their frequent changes. To alleviate this issue, in this paper we present efficient (α, β)-core maintenance algorithms over bipartite graphs. We first introduce a novel concept, called bi-core numbers, for the vertices of bipartite graphs. Based on this concept, we theoretically analyze the effect of inserting and deleting edges on the changes of vertices' bi-core numbers, which can be further used to narrow down the scope of the updates, thereby reducing the computational redundancy. We then propose efficient (α, β)-core maintenance algorithms for handling the edge insertion and edge deletion respectively, by exploiting the above theoretical analysis results. Finally, extensive experimental evaluations are performed on both real and synthetic datasets, and the results show that our proposed algorithms are up to two orders of magnitude faster than the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信