建立反对假新闻的堡垒

Q2 Social Sciences
Nafiz Fahad, Kah Ong Michael Goh, Md. Ismail Hossen, Connie Tee, Md. Asraf Ali
{"title":"建立反对假新闻的堡垒","authors":"Nafiz Fahad, Kah Ong Michael Goh, Md. Ismail Hossen, Connie Tee, Md. Asraf Ali","doi":"10.18080/jtde.v11n3.765","DOIUrl":null,"url":null,"abstract":"Given the prevalence of fake news in today’s tech-driven era, an urgent need exists for an automated mechanism to effectively curb its dissemination. This research aims to demonstrate the impacts of fake news through a literature review and establish a reliable system for identifying it using machine (ML) learning classifiers. By combining CNN, RNN, and ANN models, a novel model is proposed to detect fake news with 94.5% accuracy. Prior studies have successfully employed ML algorithms to identify false information by analysing textual and visual features in standard datasets. The comprehensive literature review emphasises the consequences of fake news on individuals, economies, societies, politics, and free expression. The proposed hybrid model, trained on extensive data and evaluated using accuracy, precision and recall measures, outperforms existing models. This study underscores the importance of developing automated systems to counter the spread of fake news and calls for further research in this domain.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a Fortress Against Fake News\",\"authors\":\"Nafiz Fahad, Kah Ong Michael Goh, Md. Ismail Hossen, Connie Tee, Md. Asraf Ali\",\"doi\":\"10.18080/jtde.v11n3.765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the prevalence of fake news in today’s tech-driven era, an urgent need exists for an automated mechanism to effectively curb its dissemination. This research aims to demonstrate the impacts of fake news through a literature review and establish a reliable system for identifying it using machine (ML) learning classifiers. By combining CNN, RNN, and ANN models, a novel model is proposed to detect fake news with 94.5% accuracy. Prior studies have successfully employed ML algorithms to identify false information by analysing textual and visual features in standard datasets. The comprehensive literature review emphasises the consequences of fake news on individuals, economies, societies, politics, and free expression. The proposed hybrid model, trained on extensive data and evaluated using accuracy, precision and recall measures, outperforms existing models. This study underscores the importance of developing automated systems to counter the spread of fake news and calls for further research in this domain.\",\"PeriodicalId\":37752,\"journal\":{\"name\":\"Australian Journal of Telecommunications and the Digital Economy\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Telecommunications and the Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18080/jtde.v11n3.765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v11n3.765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

鉴于假新闻在当今科技驱动时代的盛行,迫切需要一种自动化机制来有效遏制其传播。本研究旨在通过文献综述来证明假新闻的影响,并建立一个可靠的系统,使用机器学习分类器来识别假新闻。通过结合CNN、RNN和ANN模型,提出了一种新的假新闻检测模型,准确率为94.5%。先前的研究已经成功地使用ML算法通过分析标准数据集中的文本和视觉特征来识别虚假信息。全面的文献综述强调了假新闻对个人、经济、社会、政治和言论自由的影响。所提出的混合模型经过大量数据的训练,并使用准确性、精密度和召回率指标进行评估,优于现有模型。这项研究强调了开发自动化系统来对抗假新闻传播的重要性,并呼吁在这一领域进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building a Fortress Against Fake News
Given the prevalence of fake news in today’s tech-driven era, an urgent need exists for an automated mechanism to effectively curb its dissemination. This research aims to demonstrate the impacts of fake news through a literature review and establish a reliable system for identifying it using machine (ML) learning classifiers. By combining CNN, RNN, and ANN models, a novel model is proposed to detect fake news with 94.5% accuracy. Prior studies have successfully employed ML algorithms to identify false information by analysing textual and visual features in standard datasets. The comprehensive literature review emphasises the consequences of fake news on individuals, economies, societies, politics, and free expression. The proposed hybrid model, trained on extensive data and evaluated using accuracy, precision and recall measures, outperforms existing models. This study underscores the importance of developing automated systems to counter the spread of fake news and calls for further research in this domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
37
期刊介绍: The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信