{"title":"基于关键字匹配的网络钓鱼消息检测","authors":"Keng-Theen Tham, Kok-Why Ng, Su-Cheng Haw","doi":"10.18080/jtde.v11n3.776","DOIUrl":null,"url":null,"abstract":"This paper proposes to use the Naïve Bayes-based algorithm for phishing detection, specifically in spam emails. The paper compares probability-based and frequency-based approaches and investigates the impact of imbalanced datasets and the use of stemming as a natural language processing (NLP) technique. Results show that both algorithms perform similarly in spam detection, with the choice between them depending on factors such as efficiency and scalability. Accuracy is influenced by the dataset configuration and stemming. Imbalanced datasets lead to higher accuracy in detecting emails in the majority class, while they struggle to classify minority-class emails. In contrast, balanced datasets yield overall high accuracy for both spam and ham email identification. This study reveals that stemming has a minor impact on algorithm performance, occasionally decreasing in accuracy due to word grouping. Balancing the dataset is crucial for improving algorithm performance and achieving accurate spam email detection. Hence, both probability-based and frequency-based Naïve Bayes algorithms are effective for phishing detection using balanced datasets. The frequency-based approach, with a balanced dataset and stemming, achieves a balanced performance between recall and precision, while the probability-based method with a balanced dataset and no stemming prioritises overall accuracy.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phishing Message Detection Based on Keyword Matching\",\"authors\":\"Keng-Theen Tham, Kok-Why Ng, Su-Cheng Haw\",\"doi\":\"10.18080/jtde.v11n3.776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to use the Naïve Bayes-based algorithm for phishing detection, specifically in spam emails. The paper compares probability-based and frequency-based approaches and investigates the impact of imbalanced datasets and the use of stemming as a natural language processing (NLP) technique. Results show that both algorithms perform similarly in spam detection, with the choice between them depending on factors such as efficiency and scalability. Accuracy is influenced by the dataset configuration and stemming. Imbalanced datasets lead to higher accuracy in detecting emails in the majority class, while they struggle to classify minority-class emails. In contrast, balanced datasets yield overall high accuracy for both spam and ham email identification. This study reveals that stemming has a minor impact on algorithm performance, occasionally decreasing in accuracy due to word grouping. Balancing the dataset is crucial for improving algorithm performance and achieving accurate spam email detection. Hence, both probability-based and frequency-based Naïve Bayes algorithms are effective for phishing detection using balanced datasets. The frequency-based approach, with a balanced dataset and stemming, achieves a balanced performance between recall and precision, while the probability-based method with a balanced dataset and no stemming prioritises overall accuracy.\",\"PeriodicalId\":37752,\"journal\":{\"name\":\"Australian Journal of Telecommunications and the Digital Economy\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Telecommunications and the Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18080/jtde.v11n3.776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v11n3.776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Phishing Message Detection Based on Keyword Matching
This paper proposes to use the Naïve Bayes-based algorithm for phishing detection, specifically in spam emails. The paper compares probability-based and frequency-based approaches and investigates the impact of imbalanced datasets and the use of stemming as a natural language processing (NLP) technique. Results show that both algorithms perform similarly in spam detection, with the choice between them depending on factors such as efficiency and scalability. Accuracy is influenced by the dataset configuration and stemming. Imbalanced datasets lead to higher accuracy in detecting emails in the majority class, while they struggle to classify minority-class emails. In contrast, balanced datasets yield overall high accuracy for both spam and ham email identification. This study reveals that stemming has a minor impact on algorithm performance, occasionally decreasing in accuracy due to word grouping. Balancing the dataset is crucial for improving algorithm performance and achieving accurate spam email detection. Hence, both probability-based and frequency-based Naïve Bayes algorithms are effective for phishing detection using balanced datasets. The frequency-based approach, with a balanced dataset and stemming, achieves a balanced performance between recall and precision, while the probability-based method with a balanced dataset and no stemming prioritises overall accuracy.
期刊介绍:
The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.