Noor K. Faheed, Qahtan A. Hamad, Rasha Abdul-Hassan Issa
{"title":"生物复合材料假肢窝的热、力学和形态学影响的研究","authors":"Noor K. Faheed, Qahtan A. Hamad, Rasha Abdul-Hassan Issa","doi":"10.1080/09276440.2023.2262245","DOIUrl":null,"url":null,"abstract":"ABSTRACTOne of the major alternatives for lasting prosperity is the use of biodegradable natural fiber as reinforcements in the production of composites to tackle worldwide environmental problems. This study aims to address utilizing available and sustainable natural fibers to prevent injury to people engaged in the fabrication of prosthetic limb sockets while maintaining socket strength. An above-the-knee prosthetic socket of natural fiber-reinforced composites was prepared via the vacuum molding method. Linen, hemp, carbon, monofilament, and glass are the materials utilized. For assessing the degree of contact between the matrix and fibers, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and tensile tests were utilized. The finding shows that no novel peak was seen in the FTIR, which indicates no new material was produced. It’s related to the physical link between reinforcements and resin. SEM micrographs confirmed that the results corroborated those from the FTIR. DSC data indicated that as the number of layers rose, the glass transition temperature decreased, and mixing natural fibers with synthetics did not affect crystallization temperatures. The proposed tests have been conducted to characterize the interfacial strength, providing further information for the futuristic use of composites in various engineering applications.KEYWORDS: Natural fiberlinenhempmonofilamentprostheticFTIRSEMDSC AcknowledgementsThe authors would like to thank all the processes at the University of Technology–Baghdad.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementIt was formed through the investigation as are issue to a data-sharing order and reachable on an open basis that does not clash datasets with DOIs","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"27 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effect of thermal, mechanical, and morphological properties of bio-composites prosthetic socket\",\"authors\":\"Noor K. Faheed, Qahtan A. Hamad, Rasha Abdul-Hassan Issa\",\"doi\":\"10.1080/09276440.2023.2262245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTOne of the major alternatives for lasting prosperity is the use of biodegradable natural fiber as reinforcements in the production of composites to tackle worldwide environmental problems. This study aims to address utilizing available and sustainable natural fibers to prevent injury to people engaged in the fabrication of prosthetic limb sockets while maintaining socket strength. An above-the-knee prosthetic socket of natural fiber-reinforced composites was prepared via the vacuum molding method. Linen, hemp, carbon, monofilament, and glass are the materials utilized. For assessing the degree of contact between the matrix and fibers, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and tensile tests were utilized. The finding shows that no novel peak was seen in the FTIR, which indicates no new material was produced. It’s related to the physical link between reinforcements and resin. SEM micrographs confirmed that the results corroborated those from the FTIR. DSC data indicated that as the number of layers rose, the glass transition temperature decreased, and mixing natural fibers with synthetics did not affect crystallization temperatures. The proposed tests have been conducted to characterize the interfacial strength, providing further information for the futuristic use of composites in various engineering applications.KEYWORDS: Natural fiberlinenhempmonofilamentprostheticFTIRSEMDSC AcknowledgementsThe authors would like to thank all the processes at the University of Technology–Baghdad.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementIt was formed through the investigation as are issue to a data-sharing order and reachable on an open basis that does not clash datasets with DOIs\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2262245\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2262245","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Investigation of the effect of thermal, mechanical, and morphological properties of bio-composites prosthetic socket
ABSTRACTOne of the major alternatives for lasting prosperity is the use of biodegradable natural fiber as reinforcements in the production of composites to tackle worldwide environmental problems. This study aims to address utilizing available and sustainable natural fibers to prevent injury to people engaged in the fabrication of prosthetic limb sockets while maintaining socket strength. An above-the-knee prosthetic socket of natural fiber-reinforced composites was prepared via the vacuum molding method. Linen, hemp, carbon, monofilament, and glass are the materials utilized. For assessing the degree of contact between the matrix and fibers, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and tensile tests were utilized. The finding shows that no novel peak was seen in the FTIR, which indicates no new material was produced. It’s related to the physical link between reinforcements and resin. SEM micrographs confirmed that the results corroborated those from the FTIR. DSC data indicated that as the number of layers rose, the glass transition temperature decreased, and mixing natural fibers with synthetics did not affect crystallization temperatures. The proposed tests have been conducted to characterize the interfacial strength, providing further information for the futuristic use of composites in various engineering applications.KEYWORDS: Natural fiberlinenhempmonofilamentprostheticFTIRSEMDSC AcknowledgementsThe authors would like to thank all the processes at the University of Technology–Baghdad.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementIt was formed through the investigation as are issue to a data-sharing order and reachable on an open basis that does not clash datasets with DOIs
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields