变指数临界双相问题的变符号解

IF 0.7 3区 数学 Q2 MATHEMATICS
Nikolaos S. Papageorgiou, Francesca Vetro, Patrick Winkert
{"title":"变指数临界双相问题的变符号解","authors":"Nikolaos S. Papageorgiou, Francesca Vetro, Patrick Winkert","doi":"10.4171/zaa/1731","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with a double phase problem with variable exponent and a right-hand side consisting of a Carathéodory perturbation defined only locally and of a critical term. We stress that the presence of the critical term inhibits the possibility to apply results of the critical point theory to the corresponding energy functional. Instead, we use suitable cut-off functions and truncation techniques in order to work with a coercive functional. Then, using variational tools and an appropriate auxiliary coercive problem, we can produce a sequence of sign changing solutions to our main problem converging to $0$ in $L^{\\infty}$ and in the Musielakk–Orlicz Sobolev space.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"43 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign changing solutions for critical double phase problems with variable exponent\",\"authors\":\"Nikolaos S. Papageorgiou, Francesca Vetro, Patrick Winkert\",\"doi\":\"10.4171/zaa/1731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with a double phase problem with variable exponent and a right-hand side consisting of a Carathéodory perturbation defined only locally and of a critical term. We stress that the presence of the critical term inhibits the possibility to apply results of the critical point theory to the corresponding energy functional. Instead, we use suitable cut-off functions and truncation techniques in order to work with a coercive functional. Then, using variational tools and an appropriate auxiliary coercive problem, we can produce a sequence of sign changing solutions to our main problem converging to $0$ in $L^{\\\\infty}$ and in the Musielakk–Orlicz Sobolev space.\",\"PeriodicalId\":54402,\"journal\":{\"name\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/zaa/1731\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/zaa/1731","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类变指数双相问题,该问题的右侧包含一个仅局部定义的临界项的carathacimodory摄动。我们强调,临界项的存在抑制了将临界点理论的结果应用于相应能量泛函的可能性。相反,我们使用合适的截止函数和截断技术来处理强制泛函。然后,使用变分工具和适当的辅助强制问题,我们可以产生一系列的变号解,我们的主要问题收敛到$L^{\infty}$和Musielakk-Orlicz Sobolev空间中的$0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sign changing solutions for critical double phase problems with variable exponent
In this paper, we deal with a double phase problem with variable exponent and a right-hand side consisting of a Carathéodory perturbation defined only locally and of a critical term. We stress that the presence of the critical term inhibits the possibility to apply results of the critical point theory to the corresponding energy functional. Instead, we use suitable cut-off functions and truncation techniques in order to work with a coercive functional. Then, using variational tools and an appropriate auxiliary coercive problem, we can produce a sequence of sign changing solutions to our main problem converging to $0$ in $L^{\infty}$ and in the Musielakk–Orlicz Sobolev space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信