{"title":"双相Hardy算子的可积性","authors":"Yoshihiro Mizuta, Tetsu Shimomura","doi":"10.4171/zaa/1732","DOIUrl":null,"url":null,"abstract":"We establish Hardy–Sobolev and Hardy–Trudinger inequalities in weighted Orlicz spaces on $\\mathbb{R}^n$. As an application, we prove Hardy–Sobolev and Hardy–Trudinger inequalities in the framework of general double phase functionals given by $$ \\varphi\\_p(x,t) = \\varphi\\_1(t^p) + \\varphi\\_2((b(x)t)^p), \\quad x\\in \\mathbb{R}^n,, t \\ge 0, $$ where $p>1$, $\\varphi\\_1, \\varphi\\_2$ are positive convex functions on $(0,\\infty)$ and $b$ is a non-negative function on $\\[0,\\infty)$ which is Hölder continuous of order $\\theta \\in (0,1]$.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"117 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability for Hardy operators of double phase\",\"authors\":\"Yoshihiro Mizuta, Tetsu Shimomura\",\"doi\":\"10.4171/zaa/1732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish Hardy–Sobolev and Hardy–Trudinger inequalities in weighted Orlicz spaces on $\\\\mathbb{R}^n$. As an application, we prove Hardy–Sobolev and Hardy–Trudinger inequalities in the framework of general double phase functionals given by $$ \\\\varphi\\\\_p(x,t) = \\\\varphi\\\\_1(t^p) + \\\\varphi\\\\_2((b(x)t)^p), \\\\quad x\\\\in \\\\mathbb{R}^n,, t \\\\ge 0, $$ where $p>1$, $\\\\varphi\\\\_1, \\\\varphi\\\\_2$ are positive convex functions on $(0,\\\\infty)$ and $b$ is a non-negative function on $\\\\[0,\\\\infty)$ which is Hölder continuous of order $\\\\theta \\\\in (0,1]$.\",\"PeriodicalId\":54402,\"journal\":{\"name\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/zaa/1732\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/zaa/1732","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We establish Hardy–Sobolev and Hardy–Trudinger inequalities in weighted Orlicz spaces on $\mathbb{R}^n$. As an application, we prove Hardy–Sobolev and Hardy–Trudinger inequalities in the framework of general double phase functionals given by $$ \varphi\_p(x,t) = \varphi\_1(t^p) + \varphi\_2((b(x)t)^p), \quad x\in \mathbb{R}^n,, t \ge 0, $$ where $p>1$, $\varphi\_1, \varphi\_2$ are positive convex functions on $(0,\infty)$ and $b$ is a non-negative function on $\[0,\infty)$ which is Hölder continuous of order $\theta \in (0,1]$.
期刊介绍:
The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications.
To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.