非相称分数阶眼镜蛇王混沌系统的同步

Haris ÇALGAN, Abdullah GÖKYILDIRIM
{"title":"非相称分数阶眼镜蛇王混沌系统的同步","authors":"Haris ÇALGAN, Abdullah GÖKYILDIRIM","doi":"10.21541/apjess.1350442","DOIUrl":null,"url":null,"abstract":"In this study, the incommensurate fractional-order King Cobra (IFKC) chaotic system has been investigated. Through bifurcation diagrams and Lyapunov exponent spectra, it has been determined that the IFKC system exhibits rich dynamics. Subsequently, using the Proportional Tilt Integral Derivative (P-TID) control method, synchronization of two IFKC chaotic systems with different initial values has been achieved. Upon examination of the obtained simulation results, it has been demonstrated that the identified IFKC chaotic system and the P-TID controller can be effectively utilized for secure communication.","PeriodicalId":472387,"journal":{"name":"Academic Platform Journal of Engineering and Smart Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Incommensurate Fractional-order King Cobra Chaotic System\",\"authors\":\"Haris ÇALGAN, Abdullah GÖKYILDIRIM\",\"doi\":\"10.21541/apjess.1350442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the incommensurate fractional-order King Cobra (IFKC) chaotic system has been investigated. Through bifurcation diagrams and Lyapunov exponent spectra, it has been determined that the IFKC system exhibits rich dynamics. Subsequently, using the Proportional Tilt Integral Derivative (P-TID) control method, synchronization of two IFKC chaotic systems with different initial values has been achieved. Upon examination of the obtained simulation results, it has been demonstrated that the identified IFKC chaotic system and the P-TID controller can be effectively utilized for secure communication.\",\"PeriodicalId\":472387,\"journal\":{\"name\":\"Academic Platform Journal of Engineering and Smart Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Platform Journal of Engineering and Smart Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21541/apjess.1350442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Platform Journal of Engineering and Smart Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21541/apjess.1350442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非相称分数阶眼镜王蛇(IFKC)混沌系统。通过分岔图和李雅普诺夫指数谱,确定了IFKC系统具有丰富的动力学特性。随后,采用比例倾斜积分导数(P-TID)控制方法,实现了两个初始值不同的IFKC混沌系统的同步。通过对仿真结果的检验,证明了所识别的IFKC混沌系统和P-TID控制器可以有效地用于保密通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of Incommensurate Fractional-order King Cobra Chaotic System
In this study, the incommensurate fractional-order King Cobra (IFKC) chaotic system has been investigated. Through bifurcation diagrams and Lyapunov exponent spectra, it has been determined that the IFKC system exhibits rich dynamics. Subsequently, using the Proportional Tilt Integral Derivative (P-TID) control method, synchronization of two IFKC chaotic systems with different initial values has been achieved. Upon examination of the obtained simulation results, it has been demonstrated that the identified IFKC chaotic system and the P-TID controller can be effectively utilized for secure communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信