{"title":"线性双通量扩散方程单时变零阶系数的积分辨识","authors":"İbrahim TEKİN, Mehmet Akif ÇETİN","doi":"10.33401/fujma.1248680","DOIUrl":null,"url":null,"abstract":"Bi-flux diffusion equation, can be easily affected by the existence of external factors, is known as an anomalous diffusion. In this paper, the inverse problem (IP) of determining the solely time-dependent zero-order coefficient in a linear Bi-flux diffusion equation with initial and homogeneous boundary conditions from an integral additional specification of the energy is considered. The unique solvability of the inverse problem is demonstrated by using the contraction principle for sufficiently small times.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the Solely Time-Dependent Zero-Order Coefficient in a Linear Bi-Flux Diffusion Equation from an Integral Measurement\",\"authors\":\"İbrahim TEKİN, Mehmet Akif ÇETİN\",\"doi\":\"10.33401/fujma.1248680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi-flux diffusion equation, can be easily affected by the existence of external factors, is known as an anomalous diffusion. In this paper, the inverse problem (IP) of determining the solely time-dependent zero-order coefficient in a linear Bi-flux diffusion equation with initial and homogeneous boundary conditions from an integral additional specification of the energy is considered. The unique solvability of the inverse problem is demonstrated by using the contraction principle for sufficiently small times.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1248680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1248680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of the Solely Time-Dependent Zero-Order Coefficient in a Linear Bi-Flux Diffusion Equation from an Integral Measurement
Bi-flux diffusion equation, can be easily affected by the existence of external factors, is known as an anomalous diffusion. In this paper, the inverse problem (IP) of determining the solely time-dependent zero-order coefficient in a linear Bi-flux diffusion equation with initial and homogeneous boundary conditions from an integral additional specification of the energy is considered. The unique solvability of the inverse problem is demonstrated by using the contraction principle for sufficiently small times.