欧几里得三维空间的贝壳曲面 $\Delta x_{i}=\lambda _{i}x_{i}$

Betül BULCA SOKUR, Tuğçe DİRİM
{"title":"欧几里得三维空间的贝壳曲面 $\\Delta x_{i}=\\lambda _{i}x_{i}$","authors":"Betül BULCA SOKUR, Tuğçe DİRİM","doi":"10.32323/ujma.1330866","DOIUrl":null,"url":null,"abstract":"In this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition $\\Delta x_{i}=\\lambda _{i}x_{i}$ where $\\Delta $ denotes the Laplace operator with respect to the first fundamental form. We obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have given some special cases for the classification theorem by giving the radius function $r(u,v)$ with respect to the parameters $u$ and $v$.","PeriodicalId":498123,"journal":{"name":"Universal journal of mathematics and applications","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conchoidal Surfaces in Euclidean 3-space Satisfying $\\\\Delta x_{i}=\\\\lambda _{i}x_{i}$\",\"authors\":\"Betül BULCA SOKUR, Tuğçe DİRİM\",\"doi\":\"10.32323/ujma.1330866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition $\\\\Delta x_{i}=\\\\lambda _{i}x_{i}$ where $\\\\Delta $ denotes the Laplace operator with respect to the first fundamental form. We obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have given some special cases for the classification theorem by giving the radius function $r(u,v)$ with respect to the parameters $u$ and $v$.\",\"PeriodicalId\":498123,\"journal\":{\"name\":\"Universal journal of mathematics and applications\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal journal of mathematics and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32323/ujma.1330866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal journal of mathematics and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32323/ujma.1330866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维欧几里得空间中的孔形曲面,条件为$\Delta x_{i}=\lambda _{i}x_{i}$,其中$\Delta $为关于第一基本形式的拉普拉斯算子。得到了满足此条件的曲面的分类定理。此外,我们通过给出关于参数$u$和$v$的半径函数$r(u,v)$,给出了分类定理的一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conchoidal Surfaces in Euclidean 3-space Satisfying $\Delta x_{i}=\lambda _{i}x_{i}$
In this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition $\Delta x_{i}=\lambda _{i}x_{i}$ where $\Delta $ denotes the Laplace operator with respect to the first fundamental form. We obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have given some special cases for the classification theorem by giving the radius function $r(u,v)$ with respect to the parameters $u$ and $v$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信