二阶无扭零环的分类

Pub Date : 2023-09-30 DOI:10.36045/j.bbms.221123
Ryszard R. Andruszkiewicz, Mateusz Woronowicz
{"title":"二阶无扭零环的分类","authors":"Ryszard R. Andruszkiewicz, Mateusz Woronowicz","doi":"10.36045/j.bbms.221123","DOIUrl":null,"url":null,"abstract":"The paper contains the complete classification of nil rings with decomposable torsion-free additive group of rank two and description of nil rings with indecomposable torsion-free additive group of rank two. Moreover, it is shown that an indecomposable non-nil torsion-free abelian group $A$ of rank two supports only nilpotent rings exactly if $A$ is the additive group of a nil ring. Some decomposition criteria for torsion-free abelian groups of rank two are also included.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Classification of Torsion-Free Nil Rings of Rank Two\",\"authors\":\"Ryszard R. Andruszkiewicz, Mateusz Woronowicz\",\"doi\":\"10.36045/j.bbms.221123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper contains the complete classification of nil rings with decomposable torsion-free additive group of rank two and description of nil rings with indecomposable torsion-free additive group of rank two. Moreover, it is shown that an indecomposable non-nil torsion-free abelian group $A$ of rank two supports only nilpotent rings exactly if $A$ is the additive group of a nil ring. Some decomposition criteria for torsion-free abelian groups of rank two are also included.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.221123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36045/j.bbms.221123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有可分解的二阶无扭转加性群的零环的完全分类和具有不可分解的二阶无扭转加性群的零环的描述。进一步证明了二阶不可分解非零无扭阿贝尔群$A$只支持幂零环,当$A$是零环的加性群时。给出了二类无扭阿贝尔群的分解准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Classification of Torsion-Free Nil Rings of Rank Two
The paper contains the complete classification of nil rings with decomposable torsion-free additive group of rank two and description of nil rings with indecomposable torsion-free additive group of rank two. Moreover, it is shown that an indecomposable non-nil torsion-free abelian group $A$ of rank two supports only nilpotent rings exactly if $A$ is the additive group of a nil ring. Some decomposition criteria for torsion-free abelian groups of rank two are also included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信