近似Kähler $G \乘以G$的极小拉格朗日子流形的表征

Pub Date : 2023-09-30 DOI:10.36045/j.bbms.220331
Rodrigo Aguilar-Suárez, Gabriel Ruiz-Hernández
{"title":"近似Kähler $G \\乘以G$的极小拉格朗日子流形的表征","authors":"Rodrigo Aguilar-Suárez, Gabriel Ruiz-Hernández","doi":"10.36045/j.bbms.220331","DOIUrl":null,"url":null,"abstract":"We investigate Lagrangian submanifolds in the nearly Kähler manifold $G \\times G$. First we review the construction of a nearly Kähler structure on the Lie group product $G \\times G$, where $G$ is a Lie group with a bi-invariant metric. This construction was proposed by K. Sekigawa to E. Abbena and S. Garbiero. An example of this construction is the homogeneous nearly Kähler manifold $\\mathbb{S}^{3}\\times \\mathbb{S}^{3}$, where $G=\\mathbb{S}^{3}$ with its standard metric. It is known that this construction on $G \\times G$ gives a nearly Kähler structure. To get our main result, we extend the notion of angle functions of a Lagrangian submanifold proposed by B. Dioos, L. Vrancken and X. Wang in the case of $\\mathbb{S}^{3}\\times \\mathbb{S}^{3}$. These angle functions are useful to characterize minimal Lagrangian submanifolds in the NK manifold $G \\times G$. We prove our main result: a Lagrangian submanifold is minimal if and only if the sum of its angle functions is constant. We give five examples of Lagrangian submanifolds: three canonical examples and other two examples using an element in the center of $G$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of minimal Lagrangian submanifolds of the nearly Kähler $G \\\\times G$\",\"authors\":\"Rodrigo Aguilar-Suárez, Gabriel Ruiz-Hernández\",\"doi\":\"10.36045/j.bbms.220331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate Lagrangian submanifolds in the nearly Kähler manifold $G \\\\times G$. First we review the construction of a nearly Kähler structure on the Lie group product $G \\\\times G$, where $G$ is a Lie group with a bi-invariant metric. This construction was proposed by K. Sekigawa to E. Abbena and S. Garbiero. An example of this construction is the homogeneous nearly Kähler manifold $\\\\mathbb{S}^{3}\\\\times \\\\mathbb{S}^{3}$, where $G=\\\\mathbb{S}^{3}$ with its standard metric. It is known that this construction on $G \\\\times G$ gives a nearly Kähler structure. To get our main result, we extend the notion of angle functions of a Lagrangian submanifold proposed by B. Dioos, L. Vrancken and X. Wang in the case of $\\\\mathbb{S}^{3}\\\\times \\\\mathbb{S}^{3}$. These angle functions are useful to characterize minimal Lagrangian submanifolds in the NK manifold $G \\\\times G$. We prove our main result: a Lagrangian submanifold is minimal if and only if the sum of its angle functions is constant. We give five examples of Lagrangian submanifolds: three canonical examples and other two examples using an element in the center of $G$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.220331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36045/j.bbms.220331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了近似Kähler流形$G \ * G$中的拉格朗日子流形。首先,我们讨论了李群积$G \ * G$上的近似Kähler结构的构造,其中$G$是具有双不变度量的李群。这个建筑是由K. Sekigawa向E. Abbena和S. Garbiero提出的。这种构造的一个例子是齐次近似Kähler流形$\mathbb{S}^{3}\乘以\mathbb{S}^{3}$,其中$G=\mathbb{S}^{3}$及其标准度量。已知在$G \乘以G$上的这种构造给出了一个近似Kähler的结构。为了得到我们的主要结果,我们推广了B. Dioos, L. Vrancken和X. Wang在$\mathbb{S}^{3}\乘以\mathbb{S}^{3}$的情况下提出的拉格朗日子流形的角函数的概念。这些角函数对表征NK流形$G \乘以G$中的最小拉格朗日子流形很有用。我们证明了我们的主要结论:拉格朗日子流形最小当且仅当其角函数和为常数。我们给出了拉格朗日子流形的五个例子:三个典型的例子和另外两个在$G$中心使用一个元素的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A characterization of minimal Lagrangian submanifolds of the nearly Kähler $G \times G$
We investigate Lagrangian submanifolds in the nearly Kähler manifold $G \times G$. First we review the construction of a nearly Kähler structure on the Lie group product $G \times G$, where $G$ is a Lie group with a bi-invariant metric. This construction was proposed by K. Sekigawa to E. Abbena and S. Garbiero. An example of this construction is the homogeneous nearly Kähler manifold $\mathbb{S}^{3}\times \mathbb{S}^{3}$, where $G=\mathbb{S}^{3}$ with its standard metric. It is known that this construction on $G \times G$ gives a nearly Kähler structure. To get our main result, we extend the notion of angle functions of a Lagrangian submanifold proposed by B. Dioos, L. Vrancken and X. Wang in the case of $\mathbb{S}^{3}\times \mathbb{S}^{3}$. These angle functions are useful to characterize minimal Lagrangian submanifolds in the NK manifold $G \times G$. We prove our main result: a Lagrangian submanifold is minimal if and only if the sum of its angle functions is constant. We give five examples of Lagrangian submanifolds: three canonical examples and other two examples using an element in the center of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信