涉及Atangana-Baleanu-Caputo导数的半线性分数阶微分方程的研究

Samira ZERBİB, Ahmed KAJOUNI
{"title":"涉及Atangana-Baleanu-Caputo导数的半线性分数阶微分方程的研究","authors":"Samira ZERBİB, Ahmed KAJOUNI","doi":"10.32323/ujma.1288015","DOIUrl":null,"url":null,"abstract":"This work aims to study the existing results of mild solutions for a semi-linear Atangana-Baleanu-Caputo fractional differential equation with order $ 0 < \\theta < 1 $ in an arbitrary Banach space. We rely on some arguments to present the mild solution to our problem in terms of an $ \\theta $-resolvent family. Then we study the existence of this mild solution by using Krasnoselskii's fixed point theorem. Finally, we give an example to prove our results.","PeriodicalId":498123,"journal":{"name":"Universal journal of mathematics and applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the study of Semilinear Fractional Differential Equations involving Atangana-Baleanu-Caputo derivative\",\"authors\":\"Samira ZERBİB, Ahmed KAJOUNI\",\"doi\":\"10.32323/ujma.1288015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to study the existing results of mild solutions for a semi-linear Atangana-Baleanu-Caputo fractional differential equation with order $ 0 < \\\\theta < 1 $ in an arbitrary Banach space. We rely on some arguments to present the mild solution to our problem in terms of an $ \\\\theta $-resolvent family. Then we study the existence of this mild solution by using Krasnoselskii's fixed point theorem. Finally, we give an example to prove our results.\",\"PeriodicalId\":498123,\"journal\":{\"name\":\"Universal journal of mathematics and applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal journal of mathematics and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32323/ujma.1288015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal journal of mathematics and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32323/ujma.1288015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究一类阶为$ 0的半线性Atangana-Baleanu-Caputo分数阶微分方程温和解的现有结果;\θ,lt;1 $在任意巴拿赫空间中。我们依靠一些参数,以$ \theta $-resolvent家族的形式,为我们的问题提供温和的解决方案。然后利用Krasnoselskii不动点定理研究了该温和解的存在性。最后,给出了一个算例来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the study of Semilinear Fractional Differential Equations involving Atangana-Baleanu-Caputo derivative
This work aims to study the existing results of mild solutions for a semi-linear Atangana-Baleanu-Caputo fractional differential equation with order $ 0 < \theta < 1 $ in an arbitrary Banach space. We rely on some arguments to present the mild solution to our problem in terms of an $ \theta $-resolvent family. Then we study the existence of this mild solution by using Krasnoselskii's fixed point theorem. Finally, we give an example to prove our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信