Kendall和Spearman相关统计量的渐近相对效率

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
I. Pinelis
{"title":"Kendall和Spearman相关统计量的渐近相对效率","authors":"I. Pinelis","doi":"10.1137/s0040585x97t991313","DOIUrl":null,"url":null,"abstract":"A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"108 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Relative Efficiency of the Kendall and Spearman Correlation Statistics\",\"authors\":\"I. Pinelis\",\"doi\":\"10.1137/s0040585x97t991313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991313\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991313","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

根据模型的一定光滑性和非退化性,给出了Kendall和Spearman相关统计量的Pitman渐近相对效率使独立性检验为$1$的充分必要条件。得到了相应的易于使用和广泛适用的充分条件。这些条件适用于大多数著名的依赖模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Relative Efficiency of the Kendall and Spearman Correlation Statistics
A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信