增材制造复合材料接头的力学响应测试

Kamil RAJKOWSKI (kamil.rajkowski@wat.edu.pl), Tomasz MAJEWSKI (tomasz.majewski@wat.edu.pl)
{"title":"增材制造复合材料接头的力学响应测试","authors":"Kamil RAJKOWSKI (kamil.rajkowski@wat.edu.pl), Tomasz MAJEWSKI (tomasz.majewski@wat.edu.pl)","doi":"10.5604/01.3001.0053.8820","DOIUrl":null,"url":null,"abstract":"This paper aims to assess the quality of composite joints made with the Fused Filament Fabrication (FFF) additive manufacturing technique through strength tests. The first part of this paper details the design of different test sample versions with standardised geometry and the methods of joining plastics by application of 3D printing. The details cover the test apparatus used in the research, sample preparation methodology, as well as tensile and impact testing methodology. The test sample versions were selected according to the test types to have the results fully reproduce the mechanical response of the composite materials to the input forces. The second part of this paper analysis of the test results, presenting the fabrication accuracy of the test samples and their mechanical response recorded during the tests. Five test specimens of each version were produced to enable statistical analysis of the test results, which was indispensable for a reliable data analysis. The tests made it possible to determine how the proposed joints of plastic materials responded to the input forces, the maximum transmitted force limit, and the flaws of each version’s design. The test results made it possible to adapt the suggested solutions in the design engineering of programmable energy-absorbing structures.","PeriodicalId":52820,"journal":{"name":"Problemy Mechatroniki","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Mechanical Response of Additively Manufactured Composite Joints\",\"authors\":\"Kamil RAJKOWSKI (kamil.rajkowski@wat.edu.pl), Tomasz MAJEWSKI (tomasz.majewski@wat.edu.pl)\",\"doi\":\"10.5604/01.3001.0053.8820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to assess the quality of composite joints made with the Fused Filament Fabrication (FFF) additive manufacturing technique through strength tests. The first part of this paper details the design of different test sample versions with standardised geometry and the methods of joining plastics by application of 3D printing. The details cover the test apparatus used in the research, sample preparation methodology, as well as tensile and impact testing methodology. The test sample versions were selected according to the test types to have the results fully reproduce the mechanical response of the composite materials to the input forces. The second part of this paper analysis of the test results, presenting the fabrication accuracy of the test samples and their mechanical response recorded during the tests. Five test specimens of each version were produced to enable statistical analysis of the test results, which was indispensable for a reliable data analysis. The tests made it possible to determine how the proposed joints of plastic materials responded to the input forces, the maximum transmitted force limit, and the flaws of each version’s design. The test results made it possible to adapt the suggested solutions in the design engineering of programmable energy-absorbing structures.\",\"PeriodicalId\":52820,\"journal\":{\"name\":\"Problemy Mechatroniki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Mechatroniki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.8820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Mechatroniki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.8820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过强度测试来评估采用熔丝增材制造技术制造的复合材料接头的质量。本文第一部分详细介绍了不同测试样版的标准化几何设计和应用3D打印连接塑料的方法。详细内容包括研究中使用的测试设备,样品制备方法,以及拉伸和冲击测试方法。根据试验类型选择试验试样版本,使试验结果充分再现复合材料对输入力的力学响应。第二部分对试验结果进行了分析,给出了试验样品的制作精度和试验过程中所记录的力学响应。每个版本制作了5个试样,以便对试验结果进行统计分析,这是可靠的数据分析必不可少的。通过测试,可以确定塑料材料的拟议接头如何响应输入力、最大传递力限制以及每个版本设计的缺陷。试验结果为可编程吸能结构的工程设计提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the Mechanical Response of Additively Manufactured Composite Joints
This paper aims to assess the quality of composite joints made with the Fused Filament Fabrication (FFF) additive manufacturing technique through strength tests. The first part of this paper details the design of different test sample versions with standardised geometry and the methods of joining plastics by application of 3D printing. The details cover the test apparatus used in the research, sample preparation methodology, as well as tensile and impact testing methodology. The test sample versions were selected according to the test types to have the results fully reproduce the mechanical response of the composite materials to the input forces. The second part of this paper analysis of the test results, presenting the fabrication accuracy of the test samples and their mechanical response recorded during the tests. Five test specimens of each version were produced to enable statistical analysis of the test results, which was indispensable for a reliable data analysis. The tests made it possible to determine how the proposed joints of plastic materials responded to the input forces, the maximum transmitted force limit, and the flaws of each version’s design. The test results made it possible to adapt the suggested solutions in the design engineering of programmable energy-absorbing structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信