Sanchit Chaturvedi, Jonathan Luk, Toan T. Nguyen
求助PDF
{"title":"弱碰撞状态下的vlasov -泊松-朗道体系","authors":"Sanchit Chaturvedi, Jonathan Luk, Toan T. Nguyen","doi":"10.1090/jams/1014","DOIUrl":null,"url":null,"abstract":"Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torus, i.e. <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout 1st Row partial-differential Subscript t Baseline upper F left-parenthesis t comma x comma v right-parenthesis plus v Subscript i Baseline partial-differential Subscript x Sub Subscript i Subscript Baseline upper F left-parenthesis t comma x comma v right-parenthesis plus upper E Subscript i Baseline left-parenthesis t comma x right-parenthesis partial-differential Subscript v Sub Subscript i Subscript Baseline upper F left-parenthesis t comma x comma v right-parenthesis equals nu upper Q left-parenthesis upper F comma upper F right-parenthesis left-parenthesis t comma x comma v right-parenthesis comma 2nd Row upper E left-parenthesis t comma x right-parenthesis equals nabla normal upper Delta Superscript negative 1 Baseline left-parenthesis integral Underscript double-struck upper R cubed Endscripts upper F left-parenthesis t comma x comma v right-parenthesis normal d v minus integral minus Subscript double-struck upper T cubed Baseline integral Underscript double-struck upper R cubed Endscripts upper F left-parenthesis t comma x comma v right-parenthesis normal d v normal d x right-parenthesis comma EndLayout\"> <mml:semantics> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" side=\"left\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>Q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:msup> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>∫<!-- ∫ --></mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mpadded width=\"0\" lspace=\"-1width\"> <mml:mo>−<!-- − --></mml:mo> </mml:mpadded> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">T</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> <mml:mspace width=\"thinmathspace\" /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:annotation encoding=\"application/x-tex\">\\begin{align*} \\partial _t F(t,x,v) + v_i \\partial _{x_i} F(t,x,v) + E_i(t,x) \\partial _{v_i} F(t,x,v) = \\nu Q(F,F)(t,x,v),\\\\ E(t,x) = \\nabla \\Delta ^{-1} (\\int _{\\mathbb R^3} F(t,x,v)\\, \\mathrm {d} v - {{\\int }\\llap {-}}_{\\mathbb T^3} \\int _{\\mathbb R^3} F(t,x,v)\\, \\mathrm {d} v \\, \\mathrm {d} x), \\end{align*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu much-less-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>≪<!-- ≪ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu \\ll 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sufficiently small (but independent of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), initial data which are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis epsilon nu Superscript 1 slash 3 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:msup> <mml:mi>ν<!-- ν --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\epsilon \\nu ^{1/3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow normal infinity\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t\\to \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The solutions exhibit uniform-in-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Vlasov–Poisson–Landau system in the weakly collisional regime\",\"authors\":\"Sanchit Chaturvedi, Jonathan Luk, Toan T. Nguyen\",\"doi\":\"10.1090/jams/1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torus, i.e. <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartLayout 1st Row partial-differential Subscript t Baseline upper F left-parenthesis t comma x comma v right-parenthesis plus v Subscript i Baseline partial-differential Subscript x Sub Subscript i Subscript Baseline upper F left-parenthesis t comma x comma v right-parenthesis plus upper E Subscript i Baseline left-parenthesis t comma x right-parenthesis partial-differential Subscript v Sub Subscript i Subscript Baseline upper F left-parenthesis t comma x comma v right-parenthesis equals nu upper Q left-parenthesis upper F comma upper F right-parenthesis left-parenthesis t comma x comma v right-parenthesis comma 2nd Row upper E left-parenthesis t comma x right-parenthesis equals nabla normal upper Delta Superscript negative 1 Baseline left-parenthesis integral Underscript double-struck upper R cubed Endscripts upper F left-parenthesis t comma x comma v right-parenthesis normal d v minus integral minus Subscript double-struck upper T cubed Baseline integral Underscript double-struck upper R cubed Endscripts upper F left-parenthesis t comma x comma v right-parenthesis normal d v normal d x right-parenthesis comma EndLayout\\\"> <mml:semantics> <mml:mtable columnalign=\\\"right left right left right left right left right left right left\\\" rowspacing=\\\"3pt\\\" columnspacing=\\\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\\\" side=\\\"left\\\" displaystyle=\\\"true\\\"> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>Q</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>E</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:msup> <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mspace width=\\\"thinmathspace\\\" /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">d</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>∫<!-- ∫ --></mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mpadded width=\\\"0\\\" lspace=\\\"-1width\\\"> <mml:mo>−<!-- − --></mml:mo> </mml:mpadded> </mml:mrow> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mspace width=\\\"thinmathspace\\\" /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">d</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> <mml:mspace width=\\\"thinmathspace\\\" /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">d</mml:mi> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{align*} \\\\partial _t F(t,x,v) + v_i \\\\partial _{x_i} F(t,x,v) + E_i(t,x) \\\\partial _{v_i} F(t,x,v) = \\\\nu Q(F,F)(t,x,v),\\\\\\\\ E(t,x) = \\\\nabla \\\\Delta ^{-1} (\\\\int _{\\\\mathbb R^3} F(t,x,v)\\\\, \\\\mathrm {d} v - {{\\\\int }\\\\llap {-}}_{\\\\mathbb T^3} \\\\int _{\\\\mathbb R^3} F(t,x,v)\\\\, \\\\mathrm {d} v \\\\, \\\\mathrm {d} x), \\\\end{align*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu much-less-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>≪<!-- ≪ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu \\\\ll 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sufficiently small (but independent of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu\\\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), initial data which are <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis epsilon nu Superscript 1 slash 3 Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:msup> <mml:mi>ν<!-- ν --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\epsilon \\\\nu ^{1/3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t right-arrow normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">t\\\\to \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The solutions exhibit uniform-in-<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu\\\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1014\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
考虑在33 -环面弱碰撞区具有库仑势的vlasov -泊松-朗道系统,即∂t F (t, x, v) +∂x i F (t, x, v) + E i (t, x)∂v i F (t, x, v) = ν Q (F, F) (t, x, v), E (t, x) =∇Δ−1(∫R 3f (t, x, v) d v -∫R 3f (t, x, v) d v) \begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*}, ν≪1 \nu\ll 1。我们证明对于λ &gt;0 \epsilon &gt;0足够小(但独立于ν \nu),初始数据为O(λ ν 1/3) O(\epsilon\nu ^1/3) -来自全局麦克斯韦方程组的sobolev空间摄动导致全局实时解收敛到全局麦克斯韦方程组为t→∞t {}\to\infty。解具有均匀的ν \nu朗道阻尼和增强的耗散。我们的主要结果类似于Bedrossian对具有相同阈值的Vlasov-Poisson-Fokker-Planck方程的早期结果。然而,与Fokker-Planck情况不同的是,由于朗道碰撞算子的复杂性,线性算子不能显式地反转。为此,我们开发了一个基于能量的框架,该框架将郭的加权能量方法与低强制能量方法和交换向量场方法相结合。该证明还依赖于线性化密度方程的逐点解析估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Vlasov–Poisson–Landau system in the weakly collisional regime
Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a 3 3 -torus, i.e. ∂ t F ( t , x , v ) + v i ∂ x i F ( t , x , v ) + E i ( t , x ) ∂ v i F ( t , x , v ) = ν Q ( F , F ) ( t , x , v ) , E ( t , x ) = ∇ Δ − 1 ( ∫ R 3 F ( t , x , v ) d v − ∫ − T 3 ∫ R 3 F ( t , x , v ) d v d x ) , \begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*} with ν ≪ 1 \nu \ll 1 . We prove that for ϵ > 0 \epsilon >0 sufficiently small (but independent of ν \nu ), initial data which are O ( ϵ ν 1 / 3 ) O(\epsilon \nu ^{1/3}) -Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as t → ∞ t\to \infty . The solutions exhibit uniform-in- ν \nu Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.