Hao Liu, Xue-Cheng Tai, Ron Kimmel, Roland Glowinski
{"title":"彩色图像正则化的弹性模型","authors":"Hao Liu, Xue-Cheng Tai, Ron Kimmel, Roland Glowinski","doi":"10.1137/22m147935x","DOIUrl":null,"url":null,"abstract":"The choice of a proper regularization measure plays an important role in the field of image processing. One classical approach treats color images as two- dimensional surfaces embedded in a five-dimensional spatial-chromatic space. In this case, a natural regularization term arises as the image surface area. Choosing the chromatic coordinates as dominating over the spatial ones, we can think of the image spatial coordinates could as a parameterization of the image surface manifold in a three-dimensional color space. Minimizing the area of the image manifold leads to the Beltrami flow or mean curvature flow of the image surface in the three-dimensional color space, while minimizing the elastica of the image surface yields an additional interesting regularization. Recently, we proposed a color elastica model, which minimizes both the surface area and the elastica of the image manifold. In this paper, we propose to modify the color elastica and introduce two new models for color image regularization. The revised measures are motivated by the relations between the color elastica model, Euler’s elastica model, and the total variation model for gray level images. Compared to our previous color elastica model, the new models are direct extensions of Euler’s elastica model to color images. The proposed models are nonlinear and challenging to minimize. To overcome this difficulty, two operator-splitting methods are suggested. Specifically, nonlinearities are decoupled by the introduction of new vector- and matrix-valued variables. Then, the minimization problems are converted to initial value problems which are time-discretized by operator splitting. Each subproblem, after splitting, either has a closed-form solution or can be solved efficiently. The effectiveness and advantages of the proposed models are demonstrated by comprehensive experiments. The benefits of incorporating the elastica of the image surface as regularization terms compared to common alternatives are empirically validated.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"243 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastica Models for Color Image Regularization\",\"authors\":\"Hao Liu, Xue-Cheng Tai, Ron Kimmel, Roland Glowinski\",\"doi\":\"10.1137/22m147935x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of a proper regularization measure plays an important role in the field of image processing. One classical approach treats color images as two- dimensional surfaces embedded in a five-dimensional spatial-chromatic space. In this case, a natural regularization term arises as the image surface area. Choosing the chromatic coordinates as dominating over the spatial ones, we can think of the image spatial coordinates could as a parameterization of the image surface manifold in a three-dimensional color space. Minimizing the area of the image manifold leads to the Beltrami flow or mean curvature flow of the image surface in the three-dimensional color space, while minimizing the elastica of the image surface yields an additional interesting regularization. Recently, we proposed a color elastica model, which minimizes both the surface area and the elastica of the image manifold. In this paper, we propose to modify the color elastica and introduce two new models for color image regularization. The revised measures are motivated by the relations between the color elastica model, Euler’s elastica model, and the total variation model for gray level images. Compared to our previous color elastica model, the new models are direct extensions of Euler’s elastica model to color images. The proposed models are nonlinear and challenging to minimize. To overcome this difficulty, two operator-splitting methods are suggested. Specifically, nonlinearities are decoupled by the introduction of new vector- and matrix-valued variables. Then, the minimization problems are converted to initial value problems which are time-discretized by operator splitting. Each subproblem, after splitting, either has a closed-form solution or can be solved efficiently. The effectiveness and advantages of the proposed models are demonstrated by comprehensive experiments. The benefits of incorporating the elastica of the image surface as regularization terms compared to common alternatives are empirically validated.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m147935x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m147935x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The choice of a proper regularization measure plays an important role in the field of image processing. One classical approach treats color images as two- dimensional surfaces embedded in a five-dimensional spatial-chromatic space. In this case, a natural regularization term arises as the image surface area. Choosing the chromatic coordinates as dominating over the spatial ones, we can think of the image spatial coordinates could as a parameterization of the image surface manifold in a three-dimensional color space. Minimizing the area of the image manifold leads to the Beltrami flow or mean curvature flow of the image surface in the three-dimensional color space, while minimizing the elastica of the image surface yields an additional interesting regularization. Recently, we proposed a color elastica model, which minimizes both the surface area and the elastica of the image manifold. In this paper, we propose to modify the color elastica and introduce two new models for color image regularization. The revised measures are motivated by the relations between the color elastica model, Euler’s elastica model, and the total variation model for gray level images. Compared to our previous color elastica model, the new models are direct extensions of Euler’s elastica model to color images. The proposed models are nonlinear and challenging to minimize. To overcome this difficulty, two operator-splitting methods are suggested. Specifically, nonlinearities are decoupled by the introduction of new vector- and matrix-valued variables. Then, the minimization problems are converted to initial value problems which are time-discretized by operator splitting. Each subproblem, after splitting, either has a closed-form solution or can be solved efficiently. The effectiveness and advantages of the proposed models are demonstrated by comprehensive experiments. The benefits of incorporating the elastica of the image surface as regularization terms compared to common alternatives are empirically validated.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.