接触动力学变分一致性的实践问题

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Antonio Recuero, Alexander Lindsay
{"title":"接触动力学变分一致性的实践问题","authors":"Antonio Recuero, Alexander Lindsay","doi":"10.1115/1.4056589","DOIUrl":null,"url":null,"abstract":"Abstract Usage of contact mechanics methodologies is a pervasive modeling requirement in dynamic simulations. While for some trivial problems, solutions taken from analytical geometry are available, use of a finite element framework is common to achieve formulation generality. This work explores two dynamic contact formulations: one based on the traditional node-to-segment (NTS) approach, and a variationally consistent segment-to-segment (STS) mortar formulation. The NTS formulation employed here enforces the constraints kinematically (i.e., the interpenetration is enforced to the solver tolerance), whereas the mortar approach uses Lagrange multipliers to enforce the contact constraints. Both approaches are implemented in the open-source finite element framework Multiphysics Object-Oriented Simulation Environment (MOOSE). The results highlight two relevant contact-interface-related dynamic phenomena in finite element simulations. First, stabilization of contact constraints is discussed, taking into account the evolution of the total energy in a benchmark problem. Second, the influence of finite element discretization on both of the aforementioned contact formulations is analyzed by exercising a large-deformation example with continuous relative sliding. Variationally consistent contact approaches such as the mortar formulation lead to improved energy preservation and avoid spurious excitation of the system's frequencies. This is especially relevant in settings where inertia and vibrations are of importance.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"27 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Practical Aspects of Variational Consistency in Contact Dynamics\",\"authors\":\"Antonio Recuero, Alexander Lindsay\",\"doi\":\"10.1115/1.4056589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Usage of contact mechanics methodologies is a pervasive modeling requirement in dynamic simulations. While for some trivial problems, solutions taken from analytical geometry are available, use of a finite element framework is common to achieve formulation generality. This work explores two dynamic contact formulations: one based on the traditional node-to-segment (NTS) approach, and a variationally consistent segment-to-segment (STS) mortar formulation. The NTS formulation employed here enforces the constraints kinematically (i.e., the interpenetration is enforced to the solver tolerance), whereas the mortar approach uses Lagrange multipliers to enforce the contact constraints. Both approaches are implemented in the open-source finite element framework Multiphysics Object-Oriented Simulation Environment (MOOSE). The results highlight two relevant contact-interface-related dynamic phenomena in finite element simulations. First, stabilization of contact constraints is discussed, taking into account the evolution of the total energy in a benchmark problem. Second, the influence of finite element discretization on both of the aforementioned contact formulations is analyzed by exercising a large-deformation example with continuous relative sliding. Variationally consistent contact approaches such as the mortar formulation lead to improved energy preservation and avoid spurious excitation of the system's frequencies. This is especially relevant in settings where inertia and vibrations are of importance.\",\"PeriodicalId\":54858,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056589\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056589","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在动态仿真中,使用接触力学方法是一种普遍的建模要求。虽然对于一些琐碎的问题,可以从解析几何中获得解决方案,但通常使用有限元框架来实现公式的通用性。这项工作探讨了两种动态接触配方:一种基于传统的节点到段(NTS)方法,以及一种可变一致的段到段(STS)砂浆配方。这里采用的NTS公式从运动学上强制约束(即,强制插入到求解器公差中),而迫击炮方法使用拉格朗日乘子来强制接触约束。这两种方法都在开源有限元框架多物理场面向对象仿真环境(MOOSE)中实现。结果突出了有限元模拟中两种与接触界面相关的动力学现象。首先,考虑基准问题中总能量的演化,讨论了接触约束的稳定化问题。其次,通过连续相对滑动的大变形算例,分析了有限元离散化对上述两种接触公式的影响。变化一致的接触方法,如砂浆配方,提高了能量保存,避免了系统频率的杂散激励。这在惯性和振动很重要的情况下尤其重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Practical Aspects of Variational Consistency in Contact Dynamics
Abstract Usage of contact mechanics methodologies is a pervasive modeling requirement in dynamic simulations. While for some trivial problems, solutions taken from analytical geometry are available, use of a finite element framework is common to achieve formulation generality. This work explores two dynamic contact formulations: one based on the traditional node-to-segment (NTS) approach, and a variationally consistent segment-to-segment (STS) mortar formulation. The NTS formulation employed here enforces the constraints kinematically (i.e., the interpenetration is enforced to the solver tolerance), whereas the mortar approach uses Lagrange multipliers to enforce the contact constraints. Both approaches are implemented in the open-source finite element framework Multiphysics Object-Oriented Simulation Environment (MOOSE). The results highlight two relevant contact-interface-related dynamic phenomena in finite element simulations. First, stabilization of contact constraints is discussed, taking into account the evolution of the total energy in a benchmark problem. Second, the influence of finite element discretization on both of the aforementioned contact formulations is analyzed by exercising a large-deformation example with continuous relative sliding. Variationally consistent contact approaches such as the mortar formulation lead to improved energy preservation and avoid spurious excitation of the system's frequencies. This is especially relevant in settings where inertia and vibrations are of importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信