Jan Euler, Georg Jacobs, Amin Loriemi, Timm Jakobs, Amadeus Rolink, Julian Röder
{"title":"锥形滑动轴承作为风力发电机主轴承的尺度挑战","authors":"Jan Euler, Georg Jacobs, Amin Loriemi, Timm Jakobs, Amadeus Rolink, Julian Röder","doi":"10.3390/wind3040027","DOIUrl":null,"url":null,"abstract":"Wind energy is an important renewable energy source. Rotor main bearings are critical components of wind turbines since a faulty main bearing leads to downtime and high repair costs. Operational expenditures amount to 32% of wind energy costs. The use of plain bearings as main bearings can potentially reduce these costs. Plain bearings with segmented sliding elements can be repaired up-tower without dismantling the drivetrain, as damaged segments can be exchanged individually. One such segmented plain bearing design is the conical plain bearing design called FlexPad. For the FlexPad, proof of concept was achieved for the 1 MW range during previous studies. Modern wind turbines—especially for offshore deployment—have increased in size significantly compared with their predecessors. The goal of current studies is to transfer the FlexPad design towards a main bearing unit at a market relevant scale of 8.5 MW. In this work, the identified scaling challenges are presented. A FlexPad model scaled to the 8.5 MW range is presented to illustrate the challenges. The bearing load components, such as radial forces and torque, increase on different scales with increasing rotor size leading to changed load characteristics with increasing size. Increased rotor weight and bearing diameters result in an increase in the breakaway torque required to start turbine rotation. This breakaway torque can exceed the torque generated by the turbine at starting wind speeds. The generally increased loads necessitate stiffer sliding segments leading to the increased weight of the segments, which hampers the ability to easily exchange segments.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"208 4","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings\",\"authors\":\"Jan Euler, Georg Jacobs, Amin Loriemi, Timm Jakobs, Amadeus Rolink, Julian Röder\",\"doi\":\"10.3390/wind3040027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind energy is an important renewable energy source. Rotor main bearings are critical components of wind turbines since a faulty main bearing leads to downtime and high repair costs. Operational expenditures amount to 32% of wind energy costs. The use of plain bearings as main bearings can potentially reduce these costs. Plain bearings with segmented sliding elements can be repaired up-tower without dismantling the drivetrain, as damaged segments can be exchanged individually. One such segmented plain bearing design is the conical plain bearing design called FlexPad. For the FlexPad, proof of concept was achieved for the 1 MW range during previous studies. Modern wind turbines—especially for offshore deployment—have increased in size significantly compared with their predecessors. The goal of current studies is to transfer the FlexPad design towards a main bearing unit at a market relevant scale of 8.5 MW. In this work, the identified scaling challenges are presented. A FlexPad model scaled to the 8.5 MW range is presented to illustrate the challenges. The bearing load components, such as radial forces and torque, increase on different scales with increasing rotor size leading to changed load characteristics with increasing size. Increased rotor weight and bearing diameters result in an increase in the breakaway torque required to start turbine rotation. This breakaway torque can exceed the torque generated by the turbine at starting wind speeds. The generally increased loads necessitate stiffer sliding segments leading to the increased weight of the segments, which hampers the ability to easily exchange segments.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"208 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3040027\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wind3040027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings
Wind energy is an important renewable energy source. Rotor main bearings are critical components of wind turbines since a faulty main bearing leads to downtime and high repair costs. Operational expenditures amount to 32% of wind energy costs. The use of plain bearings as main bearings can potentially reduce these costs. Plain bearings with segmented sliding elements can be repaired up-tower without dismantling the drivetrain, as damaged segments can be exchanged individually. One such segmented plain bearing design is the conical plain bearing design called FlexPad. For the FlexPad, proof of concept was achieved for the 1 MW range during previous studies. Modern wind turbines—especially for offshore deployment—have increased in size significantly compared with their predecessors. The goal of current studies is to transfer the FlexPad design towards a main bearing unit at a market relevant scale of 8.5 MW. In this work, the identified scaling challenges are presented. A FlexPad model scaled to the 8.5 MW range is presented to illustrate the challenges. The bearing load components, such as radial forces and torque, increase on different scales with increasing rotor size leading to changed load characteristics with increasing size. Increased rotor weight and bearing diameters result in an increase in the breakaway torque required to start turbine rotation. This breakaway torque can exceed the torque generated by the turbine at starting wind speeds. The generally increased loads necessitate stiffer sliding segments leading to the increased weight of the segments, which hampers the ability to easily exchange segments.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.