{"title":"有限域上的欧几里得空间组合学","authors":"Semin Yoo","doi":"10.1007/s00026-023-00661-3","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>q</i>-binomial coefficients are <i>q</i>-analogues of the binomial coefficients, counting the number of <i>k</i>-dimensional subspaces in the <i>n</i>-dimensional vector space <span>\\({\\mathbb {F}}^n_q\\)</span> over <span>\\({\\mathbb {F}}_{q}.\\)</span> In this paper, we define a Euclidean analogue of <i>q</i>-binomial coefficients as the number of <i>k</i>-dimensional subspaces which have an orthonormal basis in the quadratic space <span>\\(({\\mathbb {F}}_{q}^{n},x_{1}^{2}+x_{2}^{2}+\\cdots +x_{n}^{2}).\\)</span> We prove its various combinatorial properties compared with those of <i>q</i>-binomial coefficients. In addition, we formulate the number of subspaces of other quadratic types and study some related properties.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorics of Euclidean Spaces over Finite Fields\",\"authors\":\"Semin Yoo\",\"doi\":\"10.1007/s00026-023-00661-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <i>q</i>-binomial coefficients are <i>q</i>-analogues of the binomial coefficients, counting the number of <i>k</i>-dimensional subspaces in the <i>n</i>-dimensional vector space <span>\\\\({\\\\mathbb {F}}^n_q\\\\)</span> over <span>\\\\({\\\\mathbb {F}}_{q}.\\\\)</span> In this paper, we define a Euclidean analogue of <i>q</i>-binomial coefficients as the number of <i>k</i>-dimensional subspaces which have an orthonormal basis in the quadratic space <span>\\\\(({\\\\mathbb {F}}_{q}^{n},x_{1}^{2}+x_{2}^{2}+\\\\cdots +x_{n}^{2}).\\\\)</span> We prove its various combinatorial properties compared with those of <i>q</i>-binomial coefficients. In addition, we formulate the number of subspaces of other quadratic types and study some related properties.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00661-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00661-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
q-二项式系数是二项式系数的 q-类似物,计算 n 维向量空间 \({\mathbb {F}}^n_q\) 上 \({\mathbb {F}}_{q}.) 的 k 维子空间的数量。\在本文中,我们定义了 q 次二项式系数的欧几里得类似物,即在二次空间 \(({\mathbb {F}_{q}^{n},x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}) 中具有正交基础的 k 维子空间的数量。)我们证明了它与 q-二项式系数相比的各种组合性质。此外,我们还提出了其他二次型的子空间数,并研究了一些相关性质。
Combinatorics of Euclidean Spaces over Finite Fields
The q-binomial coefficients are q-analogues of the binomial coefficients, counting the number of k-dimensional subspaces in the n-dimensional vector space \({\mathbb {F}}^n_q\) over \({\mathbb {F}}_{q}.\) In this paper, we define a Euclidean analogue of q-binomial coefficients as the number of k-dimensional subspaces which have an orthonormal basis in the quadratic space \(({\mathbb {F}}_{q}^{n},x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}).\) We prove its various combinatorial properties compared with those of q-binomial coefficients. In addition, we formulate the number of subspaces of other quadratic types and study some related properties.