非线性亥姆霍兹本征函数散射矩阵的规律性

IF 1 3区 数学 Q1 MATHEMATICS
Jesse Gell-Redman, Andrew Hassell, Jacob Shapiro
{"title":"非线性亥姆霍兹本征函数散射矩阵的规律性","authors":"Jesse Gell-Redman, Andrew Hassell, Jacob Shapiro","doi":"10.4171/jst/460","DOIUrl":null,"url":null,"abstract":"We study the nonlinear Helmholtz equation $(\\Delta - \\lambda^2)u = \\pm |u|^{p-1}u$ on $\\mathbb{R}^n$, $\\lambda > 0$, $p \\in \\mathbb{N}$ odd, and more generally $(\\Delta\\_g + V - \\lambda^2)u = N\\[u]$, where $\\Delta\\_g$ is the (positive) Laplace–Beltrami operator on an asymptotically Euclidean or conic manifold, $V$ is a short range potential, and $N\\[u]$ is a more general polynomial nonlinearity. Under the conditions $(p-1)(n-1)/2 > 2$ and $k > (n-1)/2$, for every $f \\in H^k(\\mathbb{S}^{n-1}\\_\\omega)$ of sufficiently small norm, we show there is a nonlinear Helmholtz eigenfunction taking the form $$ u(r, \\omega) = r^{-(n-1)/2} ( e^{-i\\lambda r} f(\\omega) + e^{+i\\lambda r} b(\\omega) + O(r^{-\\epsilon}) ), \\quad \\text{as } r \\to \\infty, $$ for some $b \\in H^k(\\mathbb{S}\\_\\omega^{n-1})$ and $\\epsilon > 0$. That is, the nonlinear scattering matrix $f \\mapsto b$ preserves Sobolev regularity, which is an improvement over the authors' previous work (2020) with Zhang, that proved a similar result with a loss of four derivatives.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":"72 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of the scattering matrix for nonlinear Helmholtz eigenfunctions\",\"authors\":\"Jesse Gell-Redman, Andrew Hassell, Jacob Shapiro\",\"doi\":\"10.4171/jst/460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nonlinear Helmholtz equation $(\\\\Delta - \\\\lambda^2)u = \\\\pm |u|^{p-1}u$ on $\\\\mathbb{R}^n$, $\\\\lambda > 0$, $p \\\\in \\\\mathbb{N}$ odd, and more generally $(\\\\Delta\\\\_g + V - \\\\lambda^2)u = N\\\\[u]$, where $\\\\Delta\\\\_g$ is the (positive) Laplace–Beltrami operator on an asymptotically Euclidean or conic manifold, $V$ is a short range potential, and $N\\\\[u]$ is a more general polynomial nonlinearity. Under the conditions $(p-1)(n-1)/2 > 2$ and $k > (n-1)/2$, for every $f \\\\in H^k(\\\\mathbb{S}^{n-1}\\\\_\\\\omega)$ of sufficiently small norm, we show there is a nonlinear Helmholtz eigenfunction taking the form $$ u(r, \\\\omega) = r^{-(n-1)/2} ( e^{-i\\\\lambda r} f(\\\\omega) + e^{+i\\\\lambda r} b(\\\\omega) + O(r^{-\\\\epsilon}) ), \\\\quad \\\\text{as } r \\\\to \\\\infty, $$ for some $b \\\\in H^k(\\\\mathbb{S}\\\\_\\\\omega^{n-1})$ and $\\\\epsilon > 0$. That is, the nonlinear scattering matrix $f \\\\mapsto b$ preserves Sobolev regularity, which is an improvement over the authors' previous work (2020) with Zhang, that proved a similar result with a loss of four derivatives.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jst/460\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jst/460","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在$\mathbb{R}^n$, $\lambda > 0$, $p \in \mathbb{N}$奇数和更一般的$(\Delta\_g + V - \lambda^2)u = N\[u]$上研究非线性亥姆霍兹方程$(\Delta - \lambda^2)u = \pm |u|^{p-1}u$,其中$\Delta\_g$是渐近欧几里得流形或二次流形上的(正)拉普拉斯-贝尔特拉米算子,$V$是短程势,$N\[u]$是更一般的多项式非线性。在$(p-1)(n-1)/2 > 2$和$k > (n-1)/2$条件下,对于每一个足够小范数的$f \in H^k(\mathbb{S}^{n-1}\_\omega)$,我们证明了对于某些$b \in H^k(\mathbb{S}\_\omega^{n-1})$和$\epsilon > 0$存在一个非线性亥姆霍兹特征函数,其形式为$$ u(r, \omega) = r^{-(n-1)/2} ( e^{-i\lambda r} f(\omega) + e^{+i\lambda r} b(\omega) + O(r^{-\epsilon}) ), \quad \text{as } r \to \infty, $$。也就是说,非线性散射矩阵$f \mapsto b$保留了Sobolev正则性,这是作者与Zhang之前的工作(2020)的改进,该工作证明了类似的结果,但损失了四个导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of the scattering matrix for nonlinear Helmholtz eigenfunctions
We study the nonlinear Helmholtz equation $(\Delta - \lambda^2)u = \pm |u|^{p-1}u$ on $\mathbb{R}^n$, $\lambda > 0$, $p \in \mathbb{N}$ odd, and more generally $(\Delta\_g + V - \lambda^2)u = N\[u]$, where $\Delta\_g$ is the (positive) Laplace–Beltrami operator on an asymptotically Euclidean or conic manifold, $V$ is a short range potential, and $N\[u]$ is a more general polynomial nonlinearity. Under the conditions $(p-1)(n-1)/2 > 2$ and $k > (n-1)/2$, for every $f \in H^k(\mathbb{S}^{n-1}\_\omega)$ of sufficiently small norm, we show there is a nonlinear Helmholtz eigenfunction taking the form $$ u(r, \omega) = r^{-(n-1)/2} ( e^{-i\lambda r} f(\omega) + e^{+i\lambda r} b(\omega) + O(r^{-\epsilon}) ), \quad \text{as } r \to \infty, $$ for some $b \in H^k(\mathbb{S}\_\omega^{n-1})$ and $\epsilon > 0$. That is, the nonlinear scattering matrix $f \mapsto b$ preserves Sobolev regularity, which is an improvement over the authors' previous work (2020) with Zhang, that proved a similar result with a loss of four derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信