帮助有帮助吗?评分中社会可取性偏差的实证分析

IF 5 3区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Jinyang Zheng, Yong Tan, Guopeng Yin, Jianing Ding
{"title":"帮助有帮助吗?评分中社会可取性偏差的实证分析","authors":"Jinyang Zheng, Yong Tan, Guopeng Yin, Jianing Ding","doi":"10.1287/isre.2020.0406","DOIUrl":null,"url":null,"abstract":"Review-in-review (RIR) is a feature that allows viewers to generate positive or negative evaluations for primary quality evaluations of a product (e.g., ratings and reviews). This study reveals that it can cause social desirability bias in primary ratings: Reviewers who desire social recognition are driven to adjust their ratings (about 7.4% likelihood) to elicit more helpful responses and avoid unhelpful ones. This bias can be shown as distorted conformity to the prior rating distribution or extremity, depending on the RIR types. The model identifies how bias magnitude correlates with users’ social characteristics, thereby identifying vulnerable individuals. Platforms can incentivize less vulnerable users and remind susceptible ones to decrease the bias and can supplement rating conditional on the identified vulnerability extent (e.g., the distribution by the “independent” raters) to mitigate the bias’s impact on rating viewers. The simulation analysis compares the bias under different counterfactual RIR system designs, finding a composite RIR system (e.g., helpful and unhelpful RIRs) partially neutralizes the bias, obviating the need to remove all RIR features. The model further adapts to evaluate underexplored RIRs forms and can provide a “de-biased” metric while preserving individual ratings.","PeriodicalId":48411,"journal":{"name":"Information Systems Research","volume":"26 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does Help Help? An Empirical Analysis of Social Desirability Bias in Ratings\",\"authors\":\"Jinyang Zheng, Yong Tan, Guopeng Yin, Jianing Ding\",\"doi\":\"10.1287/isre.2020.0406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Review-in-review (RIR) is a feature that allows viewers to generate positive or negative evaluations for primary quality evaluations of a product (e.g., ratings and reviews). This study reveals that it can cause social desirability bias in primary ratings: Reviewers who desire social recognition are driven to adjust their ratings (about 7.4% likelihood) to elicit more helpful responses and avoid unhelpful ones. This bias can be shown as distorted conformity to the prior rating distribution or extremity, depending on the RIR types. The model identifies how bias magnitude correlates with users’ social characteristics, thereby identifying vulnerable individuals. Platforms can incentivize less vulnerable users and remind susceptible ones to decrease the bias and can supplement rating conditional on the identified vulnerability extent (e.g., the distribution by the “independent” raters) to mitigate the bias’s impact on rating viewers. The simulation analysis compares the bias under different counterfactual RIR system designs, finding a composite RIR system (e.g., helpful and unhelpful RIRs) partially neutralizes the bias, obviating the need to remove all RIR features. The model further adapts to evaluate underexplored RIRs forms and can provide a “de-biased” metric while preserving individual ratings.\",\"PeriodicalId\":48411,\"journal\":{\"name\":\"Information Systems Research\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/isre.2020.0406\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/isre.2020.0406","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

Review-in-review (RIR)是一种允许查看者对产品的主要质量评估(例如,评级和评论)产生正面或负面评价的功能。本研究表明,它会在初级评分中引起社会期望偏差:渴望社会认可的评论者会被驱使调整他们的评分(约7.4%的可能性),以引出更多有益的反应,避免有害的反应。根据RIR类型的不同,这种偏差可以表现为与先前评级分布或极值的扭曲一致性。该模型确定了偏见大小如何与用户的社会特征相关,从而识别出弱势群体。平台可以激励弱势用户并提醒弱势用户减少偏见,可以根据识别出的脆弱性程度(例如“独立”评分者的分布)补充评级,以减轻偏见对评分者的影响。仿真分析比较了不同反事实RIR系统设计下的偏差,发现复合RIR系统(例如,有用和无用的RIR)部分中和了偏差,从而避免了去除所有RIR特征的需要。该模型进一步适应于评估未充分开发的rir形式,并可以在保留个人评级的同时提供“去偏见”度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does Help Help? An Empirical Analysis of Social Desirability Bias in Ratings
Review-in-review (RIR) is a feature that allows viewers to generate positive or negative evaluations for primary quality evaluations of a product (e.g., ratings and reviews). This study reveals that it can cause social desirability bias in primary ratings: Reviewers who desire social recognition are driven to adjust their ratings (about 7.4% likelihood) to elicit more helpful responses and avoid unhelpful ones. This bias can be shown as distorted conformity to the prior rating distribution or extremity, depending on the RIR types. The model identifies how bias magnitude correlates with users’ social characteristics, thereby identifying vulnerable individuals. Platforms can incentivize less vulnerable users and remind susceptible ones to decrease the bias and can supplement rating conditional on the identified vulnerability extent (e.g., the distribution by the “independent” raters) to mitigate the bias’s impact on rating viewers. The simulation analysis compares the bias under different counterfactual RIR system designs, finding a composite RIR system (e.g., helpful and unhelpful RIRs) partially neutralizes the bias, obviating the need to remove all RIR features. The model further adapts to evaluate underexplored RIRs forms and can provide a “de-biased” metric while preserving individual ratings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
8.20%
发文量
120
期刊介绍: ISR (Information Systems Research) is a journal of INFORMS, the Institute for Operations Research and the Management Sciences. Information Systems Research is a leading international journal of theory, research, and intellectual development, focused on information systems in organizations, institutions, the economy, and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信