Werner Damm, David Hess, Mark Schweda, Janos Sztipanovits, Klaus Bengler, Bianca Biebl, Martin Fränzle, Willem Hagemann, Moritz Held, Klas Ihme, Severin Kacianka, Alyssa J. Kerscher, Sebastian Lehnhoff, Andreas Luedtke, Alexander Pretschner, Astrid Rakow, Rieger Jochem, Daniel Sonntag, Maike Schwammberger, Benedikt Austel, Anirudh Unni, Eric Veith
{"title":"人类信息物理系统的参考体系结构-第一部分:基本概念","authors":"Werner Damm, David Hess, Mark Schweda, Janos Sztipanovits, Klaus Bengler, Bianca Biebl, Martin Fränzle, Willem Hagemann, Moritz Held, Klas Ihme, Severin Kacianka, Alyssa J. Kerscher, Sebastian Lehnhoff, Andreas Luedtke, Alexander Pretschner, Astrid Rakow, Rieger Jochem, Daniel Sonntag, Maike Schwammberger, Benedikt Austel, Anirudh Unni, Eric Veith","doi":"10.1145/3622879","DOIUrl":null,"url":null,"abstract":"We propose a reference architecture of safety-critical or industry-critical human cyber-physical systems (CPSs) capable of expressing essential classes of system-level interactions between CPS and humans relevant for the societal acceptance of such systems. To reach this quality gate, the expressivity of the model must go beyond classical viewpoints such as operational, functional, and architectural views and views used for safety and security analysis. The model does so by incorporating elements of such systems for mutual introspections in situational awareness, capabilities, and intentions in order to enable a synergetic, trusted relation in the interaction of humans and CPSs, which we see as a prerequisite for their societal acceptance. The reference architecture is represented as a metamodel incorporating conceptual and behavioral semantic aspects. We illustrate the key concepts of the metamodel with examples from cooperative autonomous driving, the operating room of the future, cockpit-tower interaction, and crisis management.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"161 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Reference Architecture of Human Cyber-Physical Systems – PART I: Fundamental Concepts\",\"authors\":\"Werner Damm, David Hess, Mark Schweda, Janos Sztipanovits, Klaus Bengler, Bianca Biebl, Martin Fränzle, Willem Hagemann, Moritz Held, Klas Ihme, Severin Kacianka, Alyssa J. Kerscher, Sebastian Lehnhoff, Andreas Luedtke, Alexander Pretschner, Astrid Rakow, Rieger Jochem, Daniel Sonntag, Maike Schwammberger, Benedikt Austel, Anirudh Unni, Eric Veith\",\"doi\":\"10.1145/3622879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a reference architecture of safety-critical or industry-critical human cyber-physical systems (CPSs) capable of expressing essential classes of system-level interactions between CPS and humans relevant for the societal acceptance of such systems. To reach this quality gate, the expressivity of the model must go beyond classical viewpoints such as operational, functional, and architectural views and views used for safety and security analysis. The model does so by incorporating elements of such systems for mutual introspections in situational awareness, capabilities, and intentions in order to enable a synergetic, trusted relation in the interaction of humans and CPSs, which we see as a prerequisite for their societal acceptance. The reference architecture is represented as a metamodel incorporating conceptual and behavioral semantic aspects. We illustrate the key concepts of the metamodel with examples from cooperative autonomous driving, the operating room of the future, cockpit-tower interaction, and crisis management.\",\"PeriodicalId\":7055,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Reference Architecture of Human Cyber-Physical Systems – PART I: Fundamental Concepts
We propose a reference architecture of safety-critical or industry-critical human cyber-physical systems (CPSs) capable of expressing essential classes of system-level interactions between CPS and humans relevant for the societal acceptance of such systems. To reach this quality gate, the expressivity of the model must go beyond classical viewpoints such as operational, functional, and architectural views and views used for safety and security analysis. The model does so by incorporating elements of such systems for mutual introspections in situational awareness, capabilities, and intentions in order to enable a synergetic, trusted relation in the interaction of humans and CPSs, which we see as a prerequisite for their societal acceptance. The reference architecture is represented as a metamodel incorporating conceptual and behavioral semantic aspects. We illustrate the key concepts of the metamodel with examples from cooperative autonomous driving, the operating room of the future, cockpit-tower interaction, and crisis management.