{"title":"基于学习的基于空间连贯的鲁棒说话人计数和分离","authors":"Yicheng Hsu, Mingsian R. Bai","doi":"10.1186/s13636-023-00298-3","DOIUrl":null,"url":null,"abstract":"Abstract A three-stage approach is proposed for speaker counting and speech separation in noisy and reverberant environments. In the spatial feature extraction, a spatial coherence matrix (SCM) is computed using whitened relative transfer functions (wRTFs) across time frames. The global activity functions of each speaker are estimated from a simplex constructed using the eigenvectors of the SCM, while the local coherence functions are computed from the coherence between the wRTFs of a time-frequency bin and the global activity function-weighted RTF of the target speaker. In speaker counting, we use the eigenvalues of the SCM and the maximum similarity of the interframe global activity distributions between two speakers as the input features to the speaker counting network (SCnet). In speaker separation, a global and local activity-driven network (GLADnet) is used to extract each independent speaker signal, which is particularly useful for highly overlapping speech signals. Experimental results obtained from the real meeting recordings show that the proposed system achieves superior speaker counting and speaker separation performance compared to previous publications without the prior knowledge of the array configurations.","PeriodicalId":49309,"journal":{"name":"Journal on Audio Speech and Music Processing","volume":"13 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning-based robust speaker counting and separation with the aid of spatial coherence\",\"authors\":\"Yicheng Hsu, Mingsian R. Bai\",\"doi\":\"10.1186/s13636-023-00298-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A three-stage approach is proposed for speaker counting and speech separation in noisy and reverberant environments. In the spatial feature extraction, a spatial coherence matrix (SCM) is computed using whitened relative transfer functions (wRTFs) across time frames. The global activity functions of each speaker are estimated from a simplex constructed using the eigenvectors of the SCM, while the local coherence functions are computed from the coherence between the wRTFs of a time-frequency bin and the global activity function-weighted RTF of the target speaker. In speaker counting, we use the eigenvalues of the SCM and the maximum similarity of the interframe global activity distributions between two speakers as the input features to the speaker counting network (SCnet). In speaker separation, a global and local activity-driven network (GLADnet) is used to extract each independent speaker signal, which is particularly useful for highly overlapping speech signals. Experimental results obtained from the real meeting recordings show that the proposed system achieves superior speaker counting and speaker separation performance compared to previous publications without the prior knowledge of the array configurations.\",\"PeriodicalId\":49309,\"journal\":{\"name\":\"Journal on Audio Speech and Music Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-023-00298-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal on Audio Speech and Music Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13636-023-00298-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning-based robust speaker counting and separation with the aid of spatial coherence
Abstract A three-stage approach is proposed for speaker counting and speech separation in noisy and reverberant environments. In the spatial feature extraction, a spatial coherence matrix (SCM) is computed using whitened relative transfer functions (wRTFs) across time frames. The global activity functions of each speaker are estimated from a simplex constructed using the eigenvectors of the SCM, while the local coherence functions are computed from the coherence between the wRTFs of a time-frequency bin and the global activity function-weighted RTF of the target speaker. In speaker counting, we use the eigenvalues of the SCM and the maximum similarity of the interframe global activity distributions between two speakers as the input features to the speaker counting network (SCnet). In speaker separation, a global and local activity-driven network (GLADnet) is used to extract each independent speaker signal, which is particularly useful for highly overlapping speech signals. Experimental results obtained from the real meeting recordings show that the proposed system achieves superior speaker counting and speaker separation performance compared to previous publications without the prior knowledge of the array configurations.
期刊介绍:
The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.