生物孔隙弹性模型中最小二乘型等低阶有限元

Pub Date : 2023-09-20 DOI:10.11650/tjm/230702
Hsueh-Chen Lee, Hyesuk Lee
{"title":"生物孔隙弹性模型中最小二乘型等低阶有限元","authors":"Hsueh-Chen Lee, Hyesuk Lee","doi":"10.11650/tjm/230702","DOIUrl":null,"url":null,"abstract":"We investigate the behavior of the approximate solution of Biot's consolidation model using a weighted least-squares (WLS) finite element method. The model describes the fluid flow in a deformable porous medium, with variables for fluid pressure, velocity, and displacement. The WLS functional is defined based on the stress-displacement formulation, with the symmetry condition of the stress and the weight that depends on the time step size for the temporal discretization of the model. An a priori error estimate for the first-order linearized least squares (LS) system is analyzed, and its validity is confirmed through numerical results. By using continuous piecewise linear finite element spaces for all variables and adjusting the weight appropriately, we obtain optimal error convergence rates for all variables. Additionally, we present two numerical examples to demonstrate the implementation of the WLS method for benchmark problems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equal Lower-order Finite Elements of Least-squares Type in Biot Poroelasticity Modeling\",\"authors\":\"Hsueh-Chen Lee, Hyesuk Lee\",\"doi\":\"10.11650/tjm/230702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the behavior of the approximate solution of Biot's consolidation model using a weighted least-squares (WLS) finite element method. The model describes the fluid flow in a deformable porous medium, with variables for fluid pressure, velocity, and displacement. The WLS functional is defined based on the stress-displacement formulation, with the symmetry condition of the stress and the weight that depends on the time step size for the temporal discretization of the model. An a priori error estimate for the first-order linearized least squares (LS) system is analyzed, and its validity is confirmed through numerical results. By using continuous piecewise linear finite element spaces for all variables and adjusting the weight appropriately, we obtain optimal error convergence rates for all variables. Additionally, we present two numerical examples to demonstrate the implementation of the WLS method for benchmark problems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用加权最小二乘(WLS)有限元法研究了Biot固结模型近似解的行为。该模型描述了流体在可变形多孔介质中的流动,变量包括流体压力、速度和位移。WLS泛函是基于应力-位移公式定义的,其应力和权值的对称条件取决于模型时间离散化的时间步长。分析了一阶线性化最小二乘(LS)系统的先验误差估计方法,并通过数值结果验证了其有效性。通过对所有变量使用连续分段线性有限元空间,并适当调整权值,得到了所有变量的最优误差收敛率。此外,我们给出了两个数值示例来演示WLS方法在基准问题中的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equal Lower-order Finite Elements of Least-squares Type in Biot Poroelasticity Modeling
We investigate the behavior of the approximate solution of Biot's consolidation model using a weighted least-squares (WLS) finite element method. The model describes the fluid flow in a deformable porous medium, with variables for fluid pressure, velocity, and displacement. The WLS functional is defined based on the stress-displacement formulation, with the symmetry condition of the stress and the weight that depends on the time step size for the temporal discretization of the model. An a priori error estimate for the first-order linearized least squares (LS) system is analyzed, and its validity is confirmed through numerical results. By using continuous piecewise linear finite element spaces for all variables and adjusting the weight appropriately, we obtain optimal error convergence rates for all variables. Additionally, we present two numerical examples to demonstrate the implementation of the WLS method for benchmark problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信