金属环境和固定化对铜超氧化物歧化酶模拟物催化活性的影响

Micaela Richezzi, Joaquín Ferreyra, Sharon Signorella, Claudia Palopoli, Gustavo Terrestre, Nora Pellegri, Christelle Hureau, Sandra R. Signorella
{"title":"金属环境和固定化对铜超氧化物歧化酶模拟物催化活性的影响","authors":"Micaela Richezzi, Joaquín Ferreyra, Sharon Signorella, Claudia Palopoli, Gustavo Terrestre, Nora Pellegri, Christelle Hureau, Sandra R. Signorella","doi":"10.3390/inorganics11110425","DOIUrl":null,"url":null,"abstract":"The Cu(II)/Cu(I) conversion involves variation in the coordination number and geometry around the metal center. Therefore, the flexibility/rigidity of the ligand plays a critical role in the design of copper superoxide dismutase (SOD) mimics. A 1,3-Bis[(pyridin-2-ylmethyl)(propargyl)amino]propane (pypapn), a flexible ligand with an N4-donor set, was used to prepare [Cu(pypapn)(ClO4)2], a trans-Cu(II) complex whose structure was determined by the X-ray diffraction. In DMF or water, perchlorate anions are exchanged with solvent molecules, affording [Cu(pypan)(solv)2]2+ that catalyzes O2•− dismutation with a second-order rate constant kMcF = 1.26 × 107 M−1 s−1, at pH 7.8. This high activity results from a combination of ligand flexibility, total charge, and labile binding sites, which places [Cu(pypapn)(solv)2]2+ above other mononuclear Cu(II) complexes with more favorable redox potentials. The covalent anchoring of the alkyne group of the complex to azide functionalized mesoporous silica through “click” chemistry resulted in the retention of the SOD activity and improved stability. A dicationic Cu(II)-N4-Schiff base complex encapsulated in mesoporous silica was also tested as an SOD mimic, displaying higher activity than the free complex, although lower than [Cu(pypapn)(solv)2]2+. The robustness of covalently attached or encapsulated doubly charged Cu(II) complexes in a mesoporous matrix appears as a suitable approach for the design of copper-based hybrid catalysts for O2•− dismutation under physiological conditions.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Metal Environment and Immobilization on the Catalytic Activity of a Cu Superoxide Dismutase Mimic\",\"authors\":\"Micaela Richezzi, Joaquín Ferreyra, Sharon Signorella, Claudia Palopoli, Gustavo Terrestre, Nora Pellegri, Christelle Hureau, Sandra R. Signorella\",\"doi\":\"10.3390/inorganics11110425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cu(II)/Cu(I) conversion involves variation in the coordination number and geometry around the metal center. Therefore, the flexibility/rigidity of the ligand plays a critical role in the design of copper superoxide dismutase (SOD) mimics. A 1,3-Bis[(pyridin-2-ylmethyl)(propargyl)amino]propane (pypapn), a flexible ligand with an N4-donor set, was used to prepare [Cu(pypapn)(ClO4)2], a trans-Cu(II) complex whose structure was determined by the X-ray diffraction. In DMF or water, perchlorate anions are exchanged with solvent molecules, affording [Cu(pypan)(solv)2]2+ that catalyzes O2•− dismutation with a second-order rate constant kMcF = 1.26 × 107 M−1 s−1, at pH 7.8. This high activity results from a combination of ligand flexibility, total charge, and labile binding sites, which places [Cu(pypapn)(solv)2]2+ above other mononuclear Cu(II) complexes with more favorable redox potentials. The covalent anchoring of the alkyne group of the complex to azide functionalized mesoporous silica through “click” chemistry resulted in the retention of the SOD activity and improved stability. A dicationic Cu(II)-N4-Schiff base complex encapsulated in mesoporous silica was also tested as an SOD mimic, displaying higher activity than the free complex, although lower than [Cu(pypapn)(solv)2]2+. The robustness of covalently attached or encapsulated doubly charged Cu(II) complexes in a mesoporous matrix appears as a suitable approach for the design of copper-based hybrid catalysts for O2•− dismutation under physiological conditions.\",\"PeriodicalId\":13580,\"journal\":{\"name\":\"Inorganics (Basel)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics (Basel)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics11110425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics11110425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Cu(II)/Cu(I)的转换涉及金属中心周围配位数和几何形状的变化。因此,配体的柔性/刚性在铜超氧化物歧化酶(SOD)模拟物的设计中起着至关重要的作用。以1,3-二[(吡啶-2-甲基)(丙炔基)氨基]丙烷(pypapn)为柔性配体,配体为n4给体,制备了反式Cu(II)配合物[Cu(pypapn)(ClO4)2],其结构通过x射线衍射确定。在DMF或水中,高氯酸盐阴离子与溶剂分子交换,生成[Cu(pypan)(solv)2]2+,在pH为7.8时催化O2•−分解,二级速率常数kMcF = 1.26 × 107 M−1 s−1。这种高活性源于配体灵活性、总电荷和不稳定结合位点的结合,这使得[Cu(pypapn)(solv)2]2+高于其他具有更有利氧化还原电位的单核Cu(II)配合物。通过“点击”化学将配合物的炔基共价锚定在叠氮化介孔二氧化硅上,从而保持了SOD的活性并提高了稳定性。在介孔二氧化硅中包裹的指示Cu(II)-N4-Schiff碱配合物也被测试为SOD模拟物,其活性高于游离配合物,但低于[Cu(pypapn)(solv)2]2+。介孔基质中共价连接或包封双电荷Cu(II)配合物的鲁棒性为生理条件下设计铜基O2•−分解杂化催化剂提供了一种合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Metal Environment and Immobilization on the Catalytic Activity of a Cu Superoxide Dismutase Mimic
The Cu(II)/Cu(I) conversion involves variation in the coordination number and geometry around the metal center. Therefore, the flexibility/rigidity of the ligand plays a critical role in the design of copper superoxide dismutase (SOD) mimics. A 1,3-Bis[(pyridin-2-ylmethyl)(propargyl)amino]propane (pypapn), a flexible ligand with an N4-donor set, was used to prepare [Cu(pypapn)(ClO4)2], a trans-Cu(II) complex whose structure was determined by the X-ray diffraction. In DMF or water, perchlorate anions are exchanged with solvent molecules, affording [Cu(pypan)(solv)2]2+ that catalyzes O2•− dismutation with a second-order rate constant kMcF = 1.26 × 107 M−1 s−1, at pH 7.8. This high activity results from a combination of ligand flexibility, total charge, and labile binding sites, which places [Cu(pypapn)(solv)2]2+ above other mononuclear Cu(II) complexes with more favorable redox potentials. The covalent anchoring of the alkyne group of the complex to azide functionalized mesoporous silica through “click” chemistry resulted in the retention of the SOD activity and improved stability. A dicationic Cu(II)-N4-Schiff base complex encapsulated in mesoporous silica was also tested as an SOD mimic, displaying higher activity than the free complex, although lower than [Cu(pypapn)(solv)2]2+. The robustness of covalently attached or encapsulated doubly charged Cu(II) complexes in a mesoporous matrix appears as a suitable approach for the design of copper-based hybrid catalysts for O2•− dismutation under physiological conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信