Matthew I. Timofeev, Francesco V. Guarnieri, Julia E. Huddy, William J. Scheideler
{"title":"用于高效无线电力传输的工程钙钛矿太阳能电池","authors":"Matthew I. Timofeev, Francesco V. Guarnieri, Julia E. Huddy, William J. Scheideler","doi":"10.1063/5.0169827","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites are a promising photovoltaic technology for energy harvesting due to their potential for low cost via high-speed manufacturing and their flexible light form factors offering high power per weight. This study presents an investigation of the energy harvesting performance of perovskite solar cells under monochromatic illumination via finite element simulations and experimental validation with high-efficiency double cation perovskite solar cells. Device performance across a broad range of illumination intensity is analyzed, providing insights into the mechanisms limiting energy harvesting in medium- and long-range wireless power transfer. The simulations also provide a guideline for compositional engineering of wide bandgap perovskites to improve the spectral match to efficient monochromatic sources. Based on these results, we show how perovskite solar cells can become a platform for efficient (>33%) medium-range wireless power transfer at the 5–50 m scale for power levels of 1 mW to 1 W.","PeriodicalId":486383,"journal":{"name":"APL Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering perovskite solar cells for efficient wireless power transfer\",\"authors\":\"Matthew I. Timofeev, Francesco V. Guarnieri, Julia E. Huddy, William J. Scheideler\",\"doi\":\"10.1063/5.0169827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide perovskites are a promising photovoltaic technology for energy harvesting due to their potential for low cost via high-speed manufacturing and their flexible light form factors offering high power per weight. This study presents an investigation of the energy harvesting performance of perovskite solar cells under monochromatic illumination via finite element simulations and experimental validation with high-efficiency double cation perovskite solar cells. Device performance across a broad range of illumination intensity is analyzed, providing insights into the mechanisms limiting energy harvesting in medium- and long-range wireless power transfer. The simulations also provide a guideline for compositional engineering of wide bandgap perovskites to improve the spectral match to efficient monochromatic sources. Based on these results, we show how perovskite solar cells can become a platform for efficient (>33%) medium-range wireless power transfer at the 5–50 m scale for power levels of 1 mW to 1 W.\",\"PeriodicalId\":486383,\"journal\":{\"name\":\"APL Energy\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0169827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0169827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering perovskite solar cells for efficient wireless power transfer
Metal halide perovskites are a promising photovoltaic technology for energy harvesting due to their potential for low cost via high-speed manufacturing and their flexible light form factors offering high power per weight. This study presents an investigation of the energy harvesting performance of perovskite solar cells under monochromatic illumination via finite element simulations and experimental validation with high-efficiency double cation perovskite solar cells. Device performance across a broad range of illumination intensity is analyzed, providing insights into the mechanisms limiting energy harvesting in medium- and long-range wireless power transfer. The simulations also provide a guideline for compositional engineering of wide bandgap perovskites to improve the spectral match to efficient monochromatic sources. Based on these results, we show how perovskite solar cells can become a platform for efficient (>33%) medium-range wireless power transfer at the 5–50 m scale for power levels of 1 mW to 1 W.