Paul A. Jenkins, Murray Pollock, Gareth O. Roberts
{"title":"基于样条的扩散过程柔性贝叶斯推理","authors":"Paul A. Jenkins, Murray Pollock, Gareth O. Roberts","doi":"10.1007/s11009-023-10056-9","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Bayesian Inference for Diffusion Processesusing Splines\",\"authors\":\"Paul A. Jenkins, Murray Pollock, Gareth O. Roberts\",\"doi\":\"10.1007/s11009-023-10056-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-10056-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11009-023-10056-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Flexible Bayesian Inference for Diffusion Processesusing Splines
Abstract We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.