{"title":"基于模型的智能城市自动驾驶汽车变道机动轨迹控制","authors":"Igor Astrov","doi":"10.37394/23203.2023.18.36","DOIUrl":null,"url":null,"abstract":"High-quality computer control of autonomous vehicles in various environments is a priority for cyber-physical systems (CPS), Industry 4.0, and the global economy as a whole. The paper discusses the linearized control model of a Self-Driving Car (SDC) with a weight of 1160 kg. For safe maneuvering with obstacle avoidance, we employ an optimal control by Linear Quadratic Regulator (LQR) using a Simulink/MATLAB environment that is capable to demonstrate the satisfiability of LQR control for this maneuver using a 3D simulation environment under changing urban conditions in a smart city. This controller is easy for engineering implementation.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model-Based Control of Self-Driving Car Trajectory for Lanes Change Maneuver in a Smart City\",\"authors\":\"Igor Astrov\",\"doi\":\"10.37394/23203.2023.18.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality computer control of autonomous vehicles in various environments is a priority for cyber-physical systems (CPS), Industry 4.0, and the global economy as a whole. The paper discusses the linearized control model of a Self-Driving Car (SDC) with a weight of 1160 kg. For safe maneuvering with obstacle avoidance, we employ an optimal control by Linear Quadratic Regulator (LQR) using a Simulink/MATLAB environment that is capable to demonstrate the satisfiability of LQR control for this maneuver using a 3D simulation environment under changing urban conditions in a smart city. This controller is easy for engineering implementation.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23203.2023.18.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23203.2023.18.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A Model-Based Control of Self-Driving Car Trajectory for Lanes Change Maneuver in a Smart City
High-quality computer control of autonomous vehicles in various environments is a priority for cyber-physical systems (CPS), Industry 4.0, and the global economy as a whole. The paper discusses the linearized control model of a Self-Driving Car (SDC) with a weight of 1160 kg. For safe maneuvering with obstacle avoidance, we employ an optimal control by Linear Quadratic Regulator (LQR) using a Simulink/MATLAB environment that is capable to demonstrate the satisfiability of LQR control for this maneuver using a 3D simulation environment under changing urban conditions in a smart city. This controller is easy for engineering implementation.
期刊介绍:
WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.