软势费米-狄拉克玻尔兹曼方程解的存在唯一性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Zongguang Li
{"title":"软势费米-狄拉克玻尔兹曼方程解的存在唯一性","authors":"Zongguang Li","doi":"10.1090/qam/1681","DOIUrl":null,"url":null,"abstract":"In this paper we consider a modified quantum Boltzmann equation with the quantum effect measured by a continuous parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that can decrease from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\delta =1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the Fermi-Dirac particles to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\delta =0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the classical particles. In case of soft potentials, for the corresponding Cauchy problem in the whole space or in the torus, we establish the global existence and uniqueness of non-negative mild solutions in the function space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript upper T Superscript normal infinity Baseline upper L Subscript v comma x Superscript normal infinity intersection upper L Subscript upper T Superscript normal infinity Baseline upper L Subscript x Superscript normal infinity Baseline upper L Subscript v Superscript 1\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>v</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>v</mml:mi> <mml:mn>1</mml:mn> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^{\\infty }_{T}L^{\\infty }_{v,x}\\cap L^{\\infty }_{T}L^{\\infty }_{x}L^1_v</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with small defect mass, energy and entropy but allowed to have large amplitude up to the possibly maximum upper bound <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis t comma x comma v right-parenthesis less-than-or-equal-to StartFraction 1 Over delta EndFraction\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>δ<!-- δ --></mml:mi> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F(t,x,v)\\leq \\frac {1}{\\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The key point is that the obtained estimates are uniform in the quantum parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than delta less-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt; \\delta \\leq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of solutions to the Fermi-Dirac Boltzmann equation for soft potentials\",\"authors\":\"Zongguang Li\",\"doi\":\"10.1090/qam/1681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a modified quantum Boltzmann equation with the quantum effect measured by a continuous parameter <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta\\\"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that can decrease from <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta equals 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta =1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the Fermi-Dirac particles to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta equals 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta =0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the classical particles. In case of soft potentials, for the corresponding Cauchy problem in the whole space or in the torus, we establish the global existence and uniqueness of non-negative mild solutions in the function space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript upper T Superscript normal infinity Baseline upper L Subscript v comma x Superscript normal infinity intersection upper L Subscript upper T Superscript normal infinity Baseline upper L Subscript x Superscript normal infinity Baseline upper L Subscript v Superscript 1\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>v</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>v</mml:mi> <mml:mn>1</mml:mn> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L^{\\\\infty }_{T}L^{\\\\infty }_{v,x}\\\\cap L^{\\\\infty }_{T}L^{\\\\infty }_{x}L^1_v</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with small defect mass, energy and entropy but allowed to have large amplitude up to the possibly maximum upper bound <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F left-parenthesis t comma x comma v right-parenthesis less-than-or-equal-to StartFraction 1 Over delta EndFraction\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>δ<!-- δ --></mml:mi> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">F(t,x,v)\\\\leq \\\\frac {1}{\\\\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The key point is that the obtained estimates are uniform in the quantum parameter <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than delta less-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0&gt; \\\\delta \\\\leq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1681\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/qam/1681","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个修正的量子玻尔兹曼方程,其量子效应由一个连续参数δ \delta测量,该参数可以从费米-狄拉克粒子的δ =1 \delta =1减小到经典粒子的δ =0 \delta =0。在软势能情况下,对于整个空间或环应的柯西问题,我们建立了函数空间L T∞L v,x∞∩L T∞L x∞L v 1 L^ {\infty _TL^ }{}{\infty _v},x {}\cap L^{\infty _TL^ }{}{\infty _xL}^{1_v}中缺陷质量小的非负温和解的整体存在唯一性;能量和熵,但允许有较大的振幅,直到可能的最大上界F(t,x,v)≤1 δ F(t,x,v) \leq\frac 1 {}{\delta。关键}是得到的估计在量子参数0 &gt;δ≤10 &gt;\delta\leq
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of solutions to the Fermi-Dirac Boltzmann equation for soft potentials
In this paper we consider a modified quantum Boltzmann equation with the quantum effect measured by a continuous parameter δ \delta that can decrease from δ = 1 \delta =1 for the Fermi-Dirac particles to δ = 0 \delta =0 for the classical particles. In case of soft potentials, for the corresponding Cauchy problem in the whole space or in the torus, we establish the global existence and uniqueness of non-negative mild solutions in the function space L T L v , x L T L x L v 1 L^{\infty }_{T}L^{\infty }_{v,x}\cap L^{\infty }_{T}L^{\infty }_{x}L^1_v with small defect mass, energy and entropy but allowed to have large amplitude up to the possibly maximum upper bound F ( t , x , v ) 1 δ F(t,x,v)\leq \frac {1}{\delta } . The key point is that the obtained estimates are uniform in the quantum parameter 0 > δ 1 0> \delta \leq 1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信