{"title":"脉冲分数阶Beddington-DeAngelis捕食-捕食模型的分岔分析","authors":"Javad Alidousti, Mojtaba Fardi, Shrideh Al-Omari","doi":"10.15388/namc.2023.28.33471","DOIUrl":null,"url":null,"abstract":"In this paper, a fractional density-dependent prey–predator model has been considered. Certain reading of local and global stabilities of an equilibrium point of a system was extracted and conducted by applying fractional systems’ stability theorems along with Lyapunov functions. Meanwhile, the persistence of the aforementioned system has been discussed and claimed to imply a local asymptotic stability for the given positive equilibrium point. Moreover, the presented model was extended to a periodic impulsive model for the prey population. Such an expansion was implemented through the periodic catching of the prey species and the periodic releasing of the predator population. By studying the effect of changing some of the system’s parameters and drawing their bifurcation diagram, it was observed that different periodic solutions appear in the system. However, the effect of an impulse on the system subjects the system to various dynamic changes and makes it experience behaviors including cycles, period-doubling bifurcation, chaos and coexistence as well. Finally, by comparing the fractional system with the classic one, it has been concluded that the fractional system is more stable than its classical one.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation analysis of impulsive fractional-order Beddington–DeAngelis prey–predator model\",\"authors\":\"Javad Alidousti, Mojtaba Fardi, Shrideh Al-Omari\",\"doi\":\"10.15388/namc.2023.28.33471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fractional density-dependent prey–predator model has been considered. Certain reading of local and global stabilities of an equilibrium point of a system was extracted and conducted by applying fractional systems’ stability theorems along with Lyapunov functions. Meanwhile, the persistence of the aforementioned system has been discussed and claimed to imply a local asymptotic stability for the given positive equilibrium point. Moreover, the presented model was extended to a periodic impulsive model for the prey population. Such an expansion was implemented through the periodic catching of the prey species and the periodic releasing of the predator population. By studying the effect of changing some of the system’s parameters and drawing their bifurcation diagram, it was observed that different periodic solutions appear in the system. However, the effect of an impulse on the system subjects the system to various dynamic changes and makes it experience behaviors including cycles, period-doubling bifurcation, chaos and coexistence as well. Finally, by comparing the fractional system with the classic one, it has been concluded that the fractional system is more stable than its classical one.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.33471\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.33471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Bifurcation analysis of impulsive fractional-order Beddington–DeAngelis prey–predator model
In this paper, a fractional density-dependent prey–predator model has been considered. Certain reading of local and global stabilities of an equilibrium point of a system was extracted and conducted by applying fractional systems’ stability theorems along with Lyapunov functions. Meanwhile, the persistence of the aforementioned system has been discussed and claimed to imply a local asymptotic stability for the given positive equilibrium point. Moreover, the presented model was extended to a periodic impulsive model for the prey population. Such an expansion was implemented through the periodic catching of the prey species and the periodic releasing of the predator population. By studying the effect of changing some of the system’s parameters and drawing their bifurcation diagram, it was observed that different periodic solutions appear in the system. However, the effect of an impulse on the system subjects the system to various dynamic changes and makes it experience behaviors including cycles, period-doubling bifurcation, chaos and coexistence as well. Finally, by comparing the fractional system with the classic one, it has been concluded that the fractional system is more stable than its classical one.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.