Janna Grabowski, Nico Jurtz, Viktor Brandt, Harald Kruggel-Emden, Matthias Kraume
{"title":"流化床建模的子网格阻力定律与粗粒 DEM-CFD 方法的比较","authors":"Janna Grabowski, Nico Jurtz, Viktor Brandt, Harald Kruggel-Emden, Matthias Kraume","doi":"10.1007/s40571-023-00671-1","DOIUrl":null,"url":null,"abstract":"<div><p>Fluidized particulate systems can be well described by coupling the discrete element method (DEM) with computational fluid dynamics (CFD). However, the simulations are computationally very demanding. The computational demand is drastically reduced by applying the coarse grain (CG) approach, where several particles are summarized into larger grains. Scaling rules are applied to the dominant forces to obtain precise solutions. However, with growing grain size, an adequate representation of the interaction forces and, thus, representation of sub-grid effects such as bubble and cluster formation in the fluidized particulate system becomes challenging. As a result, particle drag can be overestimated, leading to an increase in average particle height. In this work, limitations of the system-to-grain ratio are identified but also a dependency on system width. To address this issue, sub-grid drag models are often applied to increase the accuracy of simulations. Nonetheless, the sub-grid models tend to have an ad hoc fitting, and thorough testing of the system configurations is often missing. Here, five different sub-grid drag models are compared and tested on fluidized bed systems with different Geldart group particles, fluidization velocity, and system-to-grain diameter ratios.\n</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 3","pages":"1035 - 1054"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-023-00671-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of sub-grid drag laws for modeling fluidized beds with the coarse grain DEM–CFD approach\",\"authors\":\"Janna Grabowski, Nico Jurtz, Viktor Brandt, Harald Kruggel-Emden, Matthias Kraume\",\"doi\":\"10.1007/s40571-023-00671-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluidized particulate systems can be well described by coupling the discrete element method (DEM) with computational fluid dynamics (CFD). However, the simulations are computationally very demanding. The computational demand is drastically reduced by applying the coarse grain (CG) approach, where several particles are summarized into larger grains. Scaling rules are applied to the dominant forces to obtain precise solutions. However, with growing grain size, an adequate representation of the interaction forces and, thus, representation of sub-grid effects such as bubble and cluster formation in the fluidized particulate system becomes challenging. As a result, particle drag can be overestimated, leading to an increase in average particle height. In this work, limitations of the system-to-grain ratio are identified but also a dependency on system width. To address this issue, sub-grid drag models are often applied to increase the accuracy of simulations. Nonetheless, the sub-grid models tend to have an ad hoc fitting, and thorough testing of the system configurations is often missing. Here, five different sub-grid drag models are compared and tested on fluidized bed systems with different Geldart group particles, fluidization velocity, and system-to-grain diameter ratios.\\n</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 3\",\"pages\":\"1035 - 1054\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40571-023-00671-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00671-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00671-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Comparison of sub-grid drag laws for modeling fluidized beds with the coarse grain DEM–CFD approach
Fluidized particulate systems can be well described by coupling the discrete element method (DEM) with computational fluid dynamics (CFD). However, the simulations are computationally very demanding. The computational demand is drastically reduced by applying the coarse grain (CG) approach, where several particles are summarized into larger grains. Scaling rules are applied to the dominant forces to obtain precise solutions. However, with growing grain size, an adequate representation of the interaction forces and, thus, representation of sub-grid effects such as bubble and cluster formation in the fluidized particulate system becomes challenging. As a result, particle drag can be overestimated, leading to an increase in average particle height. In this work, limitations of the system-to-grain ratio are identified but also a dependency on system width. To address this issue, sub-grid drag models are often applied to increase the accuracy of simulations. Nonetheless, the sub-grid models tend to have an ad hoc fitting, and thorough testing of the system configurations is often missing. Here, five different sub-grid drag models are compared and tested on fluidized bed systems with different Geldart group particles, fluidization velocity, and system-to-grain diameter ratios.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.