W. Chaiphaksa, W. Cheewasukhanont, J. Kaewkhao, N. W. Sangwaranatee
{"title":"带电粒子在玻璃介质(ZnO:Li 2o:MgO: b2o3)中的行为相互作用:数学计算","authors":"W. Chaiphaksa, W. Cheewasukhanont, J. Kaewkhao, N. W. Sangwaranatee","doi":"10.1080/10584587.2023.2234610","DOIUrl":null,"url":null,"abstract":"Abstract The glass compositions as ZnO: Li2O: MgO: B2O3 (ZLMB) were synthesized by melt-quenching technique, and studied physical properties such as density and molar volume. The behavior of charged particles such as proton and alpha was examined using the theoretical program by the SRIM coding simulation. The total mass stopping power (TMSP) and projected ranges (PR) were simulated via the SRIM at 0.01 MeV to 10 MeV of the energy ranges. The penetration depth and ion ranges also were simulated. The result found that density increased with increasing ZnO concentrations. In contrast, molar volume decreased when ZnO concentrations increased. However, The TMSP and PR values of proton and alpha particles showed decreased with raising density.","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"116 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Behavioral Interaction of Charged Particles via Glass Medium (ZnO:Li <sub>2</sub> O:MgO:B <sub>2</sub> O <sub>3</sub> ): Mathematical Calculation\",\"authors\":\"W. Chaiphaksa, W. Cheewasukhanont, J. Kaewkhao, N. W. Sangwaranatee\",\"doi\":\"10.1080/10584587.2023.2234610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The glass compositions as ZnO: Li2O: MgO: B2O3 (ZLMB) were synthesized by melt-quenching technique, and studied physical properties such as density and molar volume. The behavior of charged particles such as proton and alpha was examined using the theoretical program by the SRIM coding simulation. The total mass stopping power (TMSP) and projected ranges (PR) were simulated via the SRIM at 0.01 MeV to 10 MeV of the energy ranges. The penetration depth and ion ranges also were simulated. The result found that density increased with increasing ZnO concentrations. In contrast, molar volume decreased when ZnO concentrations increased. However, The TMSP and PR values of proton and alpha particles showed decreased with raising density.\",\"PeriodicalId\":13686,\"journal\":{\"name\":\"Integrated Ferroelectrics\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10584587.2023.2234610\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234610","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Behavioral Interaction of Charged Particles via Glass Medium (ZnO:Li 2 O:MgO:B 2 O 3 ): Mathematical Calculation
Abstract The glass compositions as ZnO: Li2O: MgO: B2O3 (ZLMB) were synthesized by melt-quenching technique, and studied physical properties such as density and molar volume. The behavior of charged particles such as proton and alpha was examined using the theoretical program by the SRIM coding simulation. The total mass stopping power (TMSP) and projected ranges (PR) were simulated via the SRIM at 0.01 MeV to 10 MeV of the energy ranges. The penetration depth and ion ranges also were simulated. The result found that density increased with increasing ZnO concentrations. In contrast, molar volume decreased when ZnO concentrations increased. However, The TMSP and PR values of proton and alpha particles showed decreased with raising density.
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.