{"title":"单分子结中分子振动辅助的共振电荷输运:时域从头算非绝热分子动力学模拟","authors":"Yunzhe Tian, Qijing Zheng, Jin Zhao","doi":"10.1088/0256-307x/40/12/126301","DOIUrl":null,"url":null,"abstract":"Abstract Using ab initio nonadiabatic molecular dynamics simulation, we have studied the time-dependent charge transport dynamics in a single-molecule junction formed by gold (Au) electrodes and a single benzene-1,4-dithiol (BDT) molecule. Two different types of charge transport channels are found in the simulation. One is the routine non-resonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which we refer to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 femtoseconds, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the B 2 and A 1 molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"39 11","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant Charge Transport Assisted by the Molecular Vibration in Single-molecule Junction from Time-domain Ab Initio Nonadiabatic Molecular Dynamics Simulations\",\"authors\":\"Yunzhe Tian, Qijing Zheng, Jin Zhao\",\"doi\":\"10.1088/0256-307x/40/12/126301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using ab initio nonadiabatic molecular dynamics simulation, we have studied the time-dependent charge transport dynamics in a single-molecule junction formed by gold (Au) electrodes and a single benzene-1,4-dithiol (BDT) molecule. Two different types of charge transport channels are found in the simulation. One is the routine non-resonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which we refer to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 femtoseconds, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the B 2 and A 1 molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.\",\"PeriodicalId\":10344,\"journal\":{\"name\":\"Chinese Physics Letters\",\"volume\":\"39 11\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0256-307x/40/12/126301\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0256-307x/40/12/126301","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Resonant Charge Transport Assisted by the Molecular Vibration in Single-molecule Junction from Time-domain Ab Initio Nonadiabatic Molecular Dynamics Simulations
Abstract Using ab initio nonadiabatic molecular dynamics simulation, we have studied the time-dependent charge transport dynamics in a single-molecule junction formed by gold (Au) electrodes and a single benzene-1,4-dithiol (BDT) molecule. Two different types of charge transport channels are found in the simulation. One is the routine non-resonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which we refer to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 femtoseconds, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the B 2 and A 1 molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.
期刊介绍:
Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.